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SUMMARY

The following report, based on the Ph.D. dissertation of the first author
[141), presents the results of an improved quasi-static numerical simulation algo-
rithm developed to study both mechanical and scalar transport properties of three-
dimensional idealized granular assemblages simultaneously. In addition, the results
of an experimental investigation of these properties are also presented and compared
against the numerical predictions. The simulation algorithm includes several new
techniques, including a shuffling algorithm for the generation of an initial random
packing of a granular assemblage and an improved microcell-adjacency method to
accelerate particle-contact search. Furthermore, a relaxation method is employed to
overcome a singularity in the quasi-linear system of equilibrium equations.

With the objective of correlating scalar transport properties such as electri-
cal conductivity with the mechanical behavior of granular media, we treat the granular
assemblage as a resistor network, with particle centers being nodes and interparticle
contacts being resistors, for the purpose of computing the conductivity.

The Reynolds dilatancy for randomly dense-packed granular assemblages is
found to depend on the interparticle friction, at odds with Reynolds’ original hy-
pothesis. The use of linear contact mechanics is found to be valid near the ideal
rigid-particle limit. Also, a strong correlation is found between electrical conductiv-
ity, stress and fabric tensors, indicating that the scalar transport properties can serve
as a useful macroscopic probe for the particle-contact topology in granular media.

Triaxial compression tests, employing steel balls as electrically conductive
granular particles serve to confirm our simulation of both the mechanical and scalar
transport properties, provided that the electrical conductivity calculations are based
on the experimental load-resistance characteristics of individual contacts. The mea-
sured contact resistance between steel balls is found to be much higher than theoretical
predictions based on Hertzian contact, and exhibits a much stronger dependence on

normal load, possibly due to asperities and oxide films on the steel-ball surfaces.
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Chapter 1

Introduction

Granular media are materials composed of distinct particles which can move
independently of one another and which interact only at highly localized interparticle
contact regions. In general, a test on real granular media such as sand is difficult to
interpret since the stress inside the sample can not be measured directly and must be
estimated from the boundary conditions, although measurements of strain have been
made possible by techniques such as X-ray photography technique. Also, Dantu and
Wakabayashi (1957) suggested the use of an photoelastic material for rods or discs in
order to determine stresses in granular media. Analysis of the force distribution in
such a test was first described by De Josselin De Jong and Verruijt (1969), and the
technique has been adopted by many researchers {45,78,79,102,103,124]). Although
testing of assemblages of photoelastic discs allows for an accurate determination of
contact forces, displacements and rotations of the individual discs, the analysis is
time consuming. Moreover, the technique is not as yet applicable to 3-dimensional
samples.

While physical models are certainly the ultimate test of any physical the-
ory, numerical simulation has the advantages over real experiments in that any mi-
croscopic information essential to the understanding of the macroscopic behavior of
these systems is accessible at any stage of a test, and “experiments” can be performed

numerically that would be very difficult physically. Many reported works show that




numerical techniques are capable of reproducing qualitatively the overall continuum
mechanical behavior of real granular materials [39,40,126,128,29]. Compared with
real granular media such as soils, however, current numerical techniques are able to
simulate only idealized particle shapes such as disks, spheres, ellipsoids etc., in a lim-
ited sample size, though the size effect is partly overcome by the use of periodic cell
models.

Currently, there are mainly two classes of numerical technique employed
to simulate the quasi-static mechanics of granular materials, namely, dynamic and
quasi-static. The dynamical simulation technique, often referred to as the Distinct
Element Method(DEM) in the older literature, was first developed by Cundall and
Strack [39] and has been widely employed since [40,126,41,128,18,33,10]. However,
various artificial damping procedures have to be used to suppress parasitic particle
vibrations in order to achieve quasi-static conditions. Moreover, it has been noticed
recently that the algorithm is only conditionally stable [10,30]. For this reason among
others, a direct quasi-static simulation has been receiving increased attention in recent
years [115,76,26,14,58].

Reynolds dilatancy, one of the most fundamental characteristics of granu-
lar materials, has been accounted for in the mechanical modeling of granular flow
[Reynolds(1895), Rowe(1962), Oda(1974a), Nemat-Nasser(1980) and Goddard et al.
(1990b)]. The factors influencing dilatancy have been studied by many investigators
[120,94,39,103,18,33,14]. The effects of interparticle sliding friction g and of factors
such as initial void ratio and state of packing have been explored sporadically, often
with conflicting conclusions. As for randomly dense-packed granular assemblages,
Reynolds suggested that friction should have no effect other than to stablize oth-
erwise unstable granular configuration [107]. Skinner showed experimentally that
friction has little effect on dilatancy of random assemblages of spherical particles
[120]). On the other hand, this effect has also been investigated by means of certain
computer simulation, mostly on the random dense-packed granular arrays, which in-

terestingly led to the opposite conclusion. In simulating the physical experiments




reported by Oda and Konishi [98], Cundall et al. found that dilatancy depends on
interparticle friction, the assembly with higher friction coeflicients dilated more and
at a greater rate [39]. Similar results have been reported by Bathurst et al. [18], and
Chen [33]).

Due to their discrete nature, the behavior of the granular media generally
depends on a variety of factors, such as void ratio, interparticle friction, particle shape,
and microstructural arrangement or “fabric”, to name only a few. Granular fabric is
believed to be one of the most important factors determining the overall mechanical
response of a medium to the deformation. Oda and Konishi [94,95,96,98] performed
direct measurement of fabric in sand specimens and made many important discoveries
on the deformation mechanisms of granular materials. However, such measurements
are difficult or tedious to parform experimentally. It would, therefore, be highly
desirable if the granular fabric could be related to and measured indirectly by means
of macroscopic quantities. Dynamic shear modulus and even the complete set of
elastic moduli, inferred from wave speed measurements, has been found to contain
direct information about the internal fabric [31,32,66,1,2)].

On the other hand, scalar transport processes such as electrical or thermal
conduction through granular materials can provide another such macroscopic quan-
tity, since the effective conductivity of granular materials depends not only on the
conductivities of solid grains and interstitial or pore fluid, but also on the volume
fraction of solid particles (void ratio) and particle arrangement or fabric. In fact,
the evolution of mechanicai anisotropy of water saturated sands and clays has been
studied in triaxial compression tests by monitoring the radial and axial electrical
conductivity [85,8,4,5]. However, since sand grains are themselves not electrically
conductive, the current is conducted only through the pore water. Therefore, the
measured anisotropy of conductivity mainly reflects the anisotropy of the void space.
While void space is part of the internal structure, it does not serve as a good indicator
of granular contact topology. In particular, granular chain structures, which bear the

major load, and the variation of interparticle contact forces are not fully captured by




the conductivity measurements of many earlier studies [85,8,4,5].

Based on above considerations, the present work is concerned with a sys-
tem consisting of electrically conductive particles and an electrically nonconductive
interstitial fluid. One objective is to find correlation between the scalar property and
mechanical properties during deformation. The investigation includes both numeri-
cal simulation and physical experiments. The numerical simulations allow access to
detailed microstructural information, such as internal fabric, coordination number,
local contact force etc.. The triaxial compression tests, which employ steel balls as
conductive granular particles serve to validate the computer simulations.

In Chapter 2, some important aspects of the theoretical development and
its application to current investigation will be reviewed briefly, including: (1) the
fabric tensor, (2) particle contact mechanics and nonlinear elasticity of granular me-
dia, and (3) scalar transport through granular media. Chapter 3 provides a detailed
description of the quasi-static simulation and the various newly developed simulation
techniques, while Chapter 4 covers the experimental aspects of the current inves-
tigation. Numerical simulations, mainly aimed at the study of the microstructural
properties of the media, are explored in Chapter 5. Next, the results of computer
simulation on scalar transport through idealized granular assemblages are compared
with experimental observations in Chapter 6. Finally, Chapter 7 summarizes the

major conclusions of the present study and suggestions for future work.




Chapter 2

Literature Review

2.1 Microstructure of Granular Media

It is well accepted nowadays that porosity or solid volume fraction alone is
not sufficient to characterize the geometry of the local microstructure of a granular
material, given that two specimens of a granular material such as soil, with identi-
cal porosity, may possess quite different microstructure and behave mechanically in
entirely different ways. In order to understand the dependence of the stress-strain re-
lation on microstructure, additional geometric measures of local structure such as the
geometric fabric tensor, have been proposed by many investigators in different fields,
including granular materials, soil and rock mechanics [99,100,113,73], cancellous or
spongy bone mechanics [62], composite micromechanics [52] etc..

Oda (1978) [99] introduced the concept of a fabric ellipsoid, an ellipsoid
determined by the three dimensional distribution of the unit normal to the tangential
contact planes. Oda, Konishi and Nemat-Nasser (1980) {100] developed the idea of
the fabric ellipsoid, equivalent to a second rank symmetric tensor, and argued that,
after porosity, it is the second best measure of microstructure in granular materials,
which appears to be a matter of general agreement now. Following the work of Oda
et al., these second rank tensors are generally called fabric tensors.

According to Oda (1978), fabric represents the spatial arrangement of parti-




cles and associated voids. This may includes: (a) orientation fabric, which relates to
the inclination of a characteristic dimension of individual particles relative to a refer-
ence direction; (b) packing or mutual relation of particles, defined by the probability
density function, E(n), of contact normals n, and the average coordination number
(the number of contacts per particle).

The anisotropy of granular materials, measured by the fabric tensor, has
been divided into two categories: (a) inherent anisotropy, a physical characteristic
inherent in the virgin materials and entirely independent of the applied strain; (b)
induced anisotropy, due exclusively to the strain associated with an applied stress.
Experimental evidence [94] has shown that the mechanical behavior of granular media
is greatly affected by their anisotropy which is closely related to the spatial arrange-
ment of its particles and the fabric. Knowing the mechanism for change of fabric
during deformation will provide better insight into the evolving anisotropy of gran-
ular materials. Therefore, the general concept and the several common measures of
fabric will be reviewed in the following.

The precise definition of a fabric tensor varies with the type of material
and, sometimes for the same material, according to investigator. The choice of a
particular fabric measure is a matter of convenience and its suitability is judged by
comparison with experimental observation [124]. A relatively universal second-order
moment tensor defined by

N;j; =<nin; > (2.1)

where < ... > designates the sample mean, i.e. < nin; >= 5‘; Y. nin;, is called the
anisotropy tensor by Satake (1982) or the fabric tensor of the first kind by Kanatani
(1984). In eq. 2.1, the n; are direction cosines of the cth contact normal n = (n;) to
the tangent plane, with respect to the orthogonal coordinate system. Cy is the total
number of contacts in a given volume, and N = (N;;) is symmetric with unit trace.

For non-spherical granules, Nemat-Nasser et al. (1983) proposed the tensors:

H;; =<m;m; > (2.2)




H;j =<min; > (2.3)
where m; is the Cartesian components of a unit branch vector, a branch being de-
fined as the connection from the centroid of one particle to that of another touching
particle. They even suggested the inclusion of average branch length [ and contact
area & into the fabric tensor, represented by Eq. 2.2 and 2.3, to reflect additional in-
formation on the microstructure. Higher order fabric tensors, such as < n;njnin; >,
< mim;mpmy > and < nin;mpm; >, may also be considered. The higher order
tensors provides more information regarding the details of the anisotropy (Kanatani
1984 and Subhash et al. 1991).

Kanatani (1984) proposed a distribution density function E(n), defined as

E(n) = nF;,. knin...ng (2.4)

in which 5 equals to 1/27 for two dimensional case and 1/4x for three dimensional

.....

kind”. Then,
E(n) = E(-n) (2.5)
/n E(n)dQ =1 (2.6)

where Q is the surface of unit sphere, and E(n)d<Q is the relative number of normals n
falling in the solid angle df), about the direction n. To represent the density function

E(r) by the second rank fabric tensor of the second kind, F;;, we have, for the three

dimensicnal medium,

E(n) = 4—17r-F.~,-n;n,- 2.7)
Fj= -1-2§(N,-,- - %5-'5) (2.8)
t,7 =1,2,3, and for a two dimensional medium,
E(n) = -;;F.;n.-n,- (2.9)
Fij = 4(N; ~ 585) (2.10)

for ¢,5 = 1,2, in which §;; denotes Kronecker’s delta.




2.2 Contact Mechanics and Nonlinear Elasticity

Cohesionless granular materials support an ambient shear stress only through
the contact between particles. Therefore, it is plausible that the mechanism of local
contacts should have great influence on overall mechanical properties of these media.
One example is the apparent nonlinear elasticity at small strains exhibited collectively
by an assemblage of particles which behave individually in a linear elastic way. This
effect can be ascribed to the intrinsic nonlinearity of the contact mechanics governing
particle-particle interactions (Goddard 1990).

Hertz first initiated the mathematical study of the effects produced by mu-
tual compression of elastic bodies for the case in which the forces between bodies
are normal to the contact surfaces [84,72]. Considering two elastic spheres in contact,
according to Hertzian theory, a circular contact surface is produced, with radius given
by

a= (M f.R)} (211)

where f,, is the normal force, R is the radius of the spheres, and M; = 3(1—-v?)/4E,in
which E and v are Young’s modulus and Poisson’s ratio of the material, respectively.

The theory also gives the relative approach of the spheres
§ = 2(M fu/RVPYP (2.12)
Hence the apparent normal contact stiffness is given as
ko = =2 = S(=) P (2.13)

The tangential stiffness for trictional contacts under oblique contact force

was given by Mindlin and Deresiewicz [84,26]:
ke = Mak,(1 — L)I/3 (2.14)
mfn

where M; = 2(1 — v)/(2 — v), 1 i~ the interparticle friction coefficient and f; is the

resultant shear force at the contact.
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Figure 2.1: Elastic wave velocity in an FCC packing of § inch diameter steel balls with
‘low’ (A) and ‘high’ (o) dimensional tolerances, £50 x 10-¢ inches and £10 x 10-¢
inches, respectively; after Duffy and Mindlin (1957). The broken lines of slope 1
have been added by Goddard (1990c) for comparison. The solid lines with slope %
represent the Hertz-Mindlin contact, (a) with, and (b) without tangential stiffness.
With permission of the author of [57].

The above theory has been adopted in most theoretical treatments of the
micromechanics of granular media, dating from the landmark works of Mindlin and
co-workers ([46) etc.) up to the most recent publications on the subject ([44,134]
and the references cited). As suggested by above equations, the underlying theory
leads inevitably to the power-law scaling E ~ p¥ for the dependence of various elastic
moduli on confining stress p and, hence, to the scaling v ~ p& for various elastic wave
velocities v (with magnitudes characterized by \/17 , here p is the material density).
However, experimental evidence within soil mechanics and geophysics shows that
the scaling E ~ pt and v ~ pt are much more representative (see Goddard [57]
for a complete survey), although the pressure dependence may change from p!/2 to
p'/3 in high pressure regime or under prolonged vibration at large amplitudes. Such

observations are illustrated in figure 2.1.

It is also reflected quantitatively in the widely used empirical formula for the

shear modulus of dry sands (see [57] and references cited) under isotropic confinement
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at initial or base pressure p:

G = £[(ec ~ €)*/(1 + ))p'? (2.15)

where e is void ratio, while § and e, are constants.

In a detailed analysis {57], Goddard showed that one can explain such fre-
quently observed departures from the 1/6-power dependence predicted by Hertz-
contact theory on the basis of two rather distinct hypothesis. The first involves
nonhertzian asperities while the second appeals to the nonlinearities arising from
strain-induced changes in the number of particle contacts. For isotropic confinement
both the above hypothesis yield a 1/4-power dependence of wave speed on pressure
at low confining pressures, with a transition to a 1/6-power dependence at high pres-

sures.

2.3 Conduction through Granular Materials

2.3.1 Introduction

The prediction of the effective conductivity of two-phase media, in which
one phase is dispersed in a second, has occupied engineers and physicists for the
past one hundred and twenty years [130,35,16,9,47,22,13,55]. This long interest has
been fueled by the proliferation of man-made composite materials and the need to
predict bulk properties such as effective conductivity. Maxwell (1873) was the first
to theoretically calculate the effective conductivity of a dilute stationary suspension
of spherical particles. By considering only the interaction of a single sphere in a

potential gradient, Maxwell was able to obtain the following well-known equation

k* 14244

ko 1-—8¢

where, § = (a —1)/(a+2); a is the ratio of conductivity of the solid particle to that

(2.16)

of the matrix(or fluid phase); k* is the effective conductivity of the suspension; ko is
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the conductivity of the matrix; ¢ is solid volume fraction. To the order of terms in ¢

to which it is exact, Eq. 2.16 takes the form:

kH = 1+384+0(¢*) (2.17)

A hundred years later, Jeffrey (1973) extended Maxwell’s result to O(¢2?) by the

addition of two-sphere interactions for a random hard-sphere dispersion

L 4

T =143+ fé* + O(4°) (2.18)

where 3 = (B) is a slowly-convergent infinite series in S.

Some progress has also been made for densely packed suspensions of perfectly
conducting spheres. Keller (1963) solved this problem correct to Ine¢, where ¢ is
the dimensionless gap width, for a densely packed simple cubic array of spheres.
Batchelor and O’Brien (1977) extended Keller’s work to include touching spheres
and near-perfect conductors by using a mean-field approach. They theoretically treat
the thermal or electrical conduction through static particulate media in the limit of
maximum volume fraction, for which the particles make point contact with each other
and even interface with flat, convex or concave surfaces under external load. They

find that when a >> 1 the effective conductivity of random two phase media is given

by
%=4lna—ll (2.19)

with constant 4 predicted by the theory and the additive constant chosen to achieve
a reasonable fit with a variety of experimental data points. Their theory suggests
that the exact method of forming a dense suspension will strongly affect its effective
conductivity by the resultant average coordination number of the particles, and it
illustrates that the microstructure has a measurable effect on the conductivity of a

suspension.

2.3.2 Electric Contacts

In present study, we will consider a simplified two phase medium with the

continuous phase being nonconductive. Electrical conduction through a packed bed
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of steel balls, with air filling the interstitial void, represents a prime example. Under
compressional loading, the particles are pressed together and, if elastic, will deform
slightly and will develop a flat circle of contact. According to the Hertz theory
described in section 2.2, two touching elastic particles which are spherical locally

with radius R will develop a flat contact circle of radius

a= [5(—1"4-%”&]* (2.20)
where a compression force f, acts on each particle normal to the common tangent
plane at the point of contact. Since the pore fluid is non-conductive, electric flux is
only possible through the contact circle, and the distribution of potential inside the
two particles is approximately the same as that of the velocity potential in irrotational
flow of an incompressible fluid through a circular hole in a plane wall [16]. The solution
to this latter problem is known, and shows that the normal flux density at the contact
circle is

J= _kAa® (r <a) (2.21)

B n(a? - r’)‘}

and the total current across the circle of contact is
Q= /o " Jorrdr = 2ak,A® (2.22)

where k, is the conductivity of the particle material and A® is the difference in
electrical potential between the particles. From the above equation, the contact
resistance between two particles across the the contact circle is

1
Ro=5r (2.23)

which is nothing but the constriction resistance of the small flat contact area. A
similar equation was also obtained by Holm (1967) and Yovanovich ( 1967):
However, the contact resistance between two real surface is far more compli-
cated. To understand why, it is necessary to consider the nature of solid surfaces and
the effect of foreign materials on the overall resistance. Contact surfaces are irregular
on a microscopic scale. Even nominally plane surfaces have a waviness with peak-

to-valley dimensions typically from tenths to several micrometers [7,60,6]. When two
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contacts are brought together under low loads, they touch at only a few asperities
(multispot contact). As the load is increased, more asperities come into contact and
the surfaces move together. Therefore, the true area of contact depends on normal
load and the hardness of the material [64,61]. This area is only a small fraction of
the apparent contact, except at very high loads where the surface can be severely
deformed. Furthermore, when the metal surface is exposed to the environment, a
contaminant film will be developed through processes such as oxidation and corro-
sion, particulate contamination (airborne and wear debris), fretting, etc., and soon
covers up the virgin metal [136,6). This contaminant film is often extremely noncon-
ductive, therefore, preventing electrical conduction through the contact. Under such
circumstances, conduction is not possible if the film is unbroken, except when the
film is only a few atomic layers thick, such that some electron current can penetrate
it by means of the tunnel effect [64]. Under a normal mechanical load, the insulating
film on the contact asperities deforms plastically and fractures, so that pure metal
substrates are once again exposed to each other. Figure 2.2 schematically illustrates
this situation where the apparent area of contact, the metallic regions, and the places
with insulating layers are differentiated. The lines of current flow converge at the
region of metallic contact, called “a” spot, as illustrated schematically in Figure 2.3.
Contact resistance decreases with increasing load. The softer and more conductive

the metal, the lower the contact resistance will be at a given force.

2.3.3 Multispot Theory of Contact

Generally, a multispot problem is simplified by assuming all of the a-spots
to be circular and to lie at distances from each other which are large compared to the
radii, thus permitting the assumption of no interference between different a-spots.

Thus, the total resistance becomes

1

Re= st 5a

(2.24)

where subscript ‘¢’ represents the ith a-spot.




14

Figure 2.2: Schematic illustration of apparent contact surface. The metallic contact
regions a are indicated by dark areas. Contact at region b (shaded areas) is with

insulating contaminant film. Region c does not touch.

current flow

aspot 4— > solid surfaces

Figure 2.3: Microscopic view of a real contact interface: “a” spot and lines of current

flow.




TN U U T E B U B D T T T T S e T W e e

15

For the case in which the a-spots lie close to each other so that the constricted
lines of flow from different a-spots deflect each other, then Eq. 2.24 is no longer valid.
Holm [64) has made some approximations for the case of the uniformly distributed
a-spots, giving the following expression

VE_ a2 VE—a?
arclan ¢ 0.6 ? + 1

Re= 2rnak, a T kA, 4k,r

(2.25)

where n is number of a-spots, a the radius of a-spot, 2! the average distance between
neighboring a-spots, A, the area of apparent contact, and r the radius of the apparent

contact surface.

2.3.4 Effective Conductivity

Suppose that a uniform intensity gradient is set up in the medium, perhaps
by imposing uniform and different values of the intensity at two distant parallel
boundaries. Although we restrict ourselves to the electrical conduction problem,
the formulation can be applied to the transport of other scalar properties such as
thermal conduction and mass diffusion. Henceforth we shall use terms and notation
appropriate to the case of electrical conduction for convenience. So the mean intensity
gradient will be written as < V® >, where V® is the electrical potential gradient at
a point in the medium (not necessarily lying in the matrix) and the brackets < ... >
denote an average over the entire volume of the medium. The local current density
J is equal to ~k,V® at a point in the matrix and —k,V® at a point in a particle.
At each point on the surface of a particle  and the normal component of J are

continuous; and at each point not on such a surface
V-IJ=0 and V®=0. (2.26)

Because of the intrinsic linearity, the magnitude of all potential differences
are proportional to the magnitude of < V® >, and so for the mean flux density we

have the linear relation [16]

<JI>=-K*"<Vd >, (2.27)
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where the effective conductivity K* is a second-rank tensor, dependent on the struc-
ture of the medium.

Next, we will derive a formulation for the mean flux density through gran-
ular media with a nonconductive fluid phase. In this case, if particles are highly
conductive, the resistivity will be brought about at contact points only. Therefore,
the medium can be approximated by a resistor network, as shown in figure 2.4, with
particle centers being nodes and interparticle contact being resistor. Similarly, Fig. 2.4
can also be used to represent a elastic network [57] by replacing resistors by elastic

springs whenever elastic properties are involved. By definition, we have
1
I>= [ 3av 2.2
< v ) (2.28)

or
<i>=z [ Jdv+lfj/ Jav (2.29)
TV, Vv V '
where V, V, and V,, represent the total volumes of medium, particle and fluid phase,
respectively, N the number of particles.

For the nonconductive matrix, the first term on the right in Eq. 2.29 vanishes,

so we have
1 N
<I>=5> /V Jav (2.30)

Applying Gauss’ divergence theorem to Eq. 2.30, the following is obtained
1 N
<J>=VZ/SPxJ-ndS (2.31)

where S, is the surface of a particle, x is the spatial position of the points on S,, and
n represents the unit normal to S,. Noting that the term J - ndS is current passing
through the portion dS of particle surface S, and assuming that the current passes

through the individual particle at discrete points of contact, we obtain

<I>= %f T xQ (2.32)

where Q is current flowing through the points of contact. For spherical particles,

x = xP + Rn, here x? is the position vector of the particle centroid, and Eq. 2.32
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i
Figure 2.4: Network
becomes
1 N c

<J>= VERE“Q (2.33)

where, electrical conservation (Kirchhoff’s law) gives:
YoxPQ=x) Q=0 (2.34)

The formulation described above is similar to one to derive the macroscopic stress

tensor for a assemblage of granular materials except for the tensorial orders involved.

In order to compute the interparticle current @, the local potentials ® of the
particles must be determined first. These local potentials can be further divided into
two parts: one derived from the mean potential gradient, the other being fluctuation
necessary to satisfy the current balance condition within the system. The latter is

obtained by solving the system of linear equations
A®' =B (2.35)

where A represents the conductance matrix, ®’ is the fluctuation and B is the net un-
balanced current owing to the mean potential gradient. When a cluster of one or more
particles is isolated from the rest, the matrix A become singular. This singularity is

resolved by means of the relaxation method to be discussed in Section 3.1.3.
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From Eq. 2.27 and Eq. 2.34, one can infer the effective conductivity tensor
K*, which represents exact solution of the problem, in contrast to the mean-field
theory of Batchelor & O’Brien [16] described next.

Their mean-field theory assumes that the potential difference ®;—®; between
particles i and j is given by (x/ — x)- < V& >= —2Rn. < V® >, i.e. to the
difference between the potential at the two sphere centers in the mean potential
field. Furthermore, we assume that the contact resistances at all contacts take the
identical average value R.. With these assumptions, one no longer has local electrical
conservation, but rather a global conservation in some average sense.

According to above assumptions, we can write

2R
= E—AQ =-Fm<A®> (2.36)

Combining Eq. 2.36 with Eq. 2.33 leads to the result similar to one given by Batchelor
& O’Brien
<J>= ———-ZZnn <Vo > (2.37)

Therefore, by comparing Eq. 2.37 with 2.27, one obtains the effective conductivity

tensor according to the mean-field theory

2 N ¢
K- = 2R Y. > mm (2.38)
or in terms of the fabric tensor N,
= 2R*Cn
K*= A% N (2.39)

where Cy is the total number of contacts in a given volume, which is equal to N
times the average coordination number.

The estimates of effective conductivity provided by the mean-field theory
of Batchelor & O’Brien, as outlined in [16], is different from that provided by the

conventional Voigt-Reuss-Hill bounds which do not depend on the fabric tensor.




Chapter 3

Quasi-static Simulation and

Assemblage Generation

As a continuation and extension to three dimensions of the work of Bashir
and Goddard [14], we have developed an improved version of their 2D programs
by introducing several new techniques [58]. Among these is the combination of the
particle-assemblage generation and the computation of particle motion together into
one single program. The new program includes a shuffling algorithm, for generating an
initially random loose-packed configuration of particles, and an improved microcell-
adjacency method to further accelerate particle-contact search. Furthermore, we have
also overcome a singularity in the quasi-linear system of equilibrium equations by
means of a relaxation method[121]. Our program is able to simulate any deformation
history and allows us to study both mechanical and scalar transport properties of an
idealized granular assemblage simultaneously.

The validity of the numerical algorithm is “tested” by comparison against
the triaxial compression experiments. I know of no other way to test it except against
other numerical codes, however, which have their own problems. The triaxial com-
pression experiments are to be described in Chapter 4, while the qualitative compar-
isons between the results of numerical simulations and triaxial compression tests will

be given in Section 6.2.

19
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The following sections will describe the quasi-static simulation and afore-

mentioned techniques.

3.1 The Model and The Relaxation Method

Unlike dynamic simulations, in which the full (Newtonian) dynamical equa-
tions are employed to update particle configurations, the present quasi-static scheme
first moves every particle in the system according to the mean deformation gradient,
thus destroying the state of equilibrium. Hence, particles have to be relocated to
a equilibrium position by means of fluctuations about the mean. These fluctuating
displacements of an individual particle are determined by the total unbalanced elas-
tic force exerted on it as a result of the mean deformation. Equilibrium is achieved
by an algorithm that allows the system to expand or contract volumetrically when
necessary to maintain a control pressure or stress at a desired level which, thereby,

allows us to compute the granular dilatancy.

3.1.1 The Force-displacement Law

During the deformation of granular assemblages, particles move with inde-
pendent degrees of freedom and interact with each other only at their contact points.
The assumed force-displacement relationship will be presented here for the case of
two spherical particles A and B in contact, as shown in figure 3.1.

Particle radius is denoted by R and its centroid by X. Upon the deformation,
a particle undergoes translational and rotational displacement increments u and w,
respectively. The superscript in Fig. 3.1 and in the sequel denotes a given particle.
The unit contact normal vector to the tangential plane, viewed from A to B, is
expressed as n = (XB — X4)/|XP — X4|. The interaction between the particles
depends on the relative motion of the contact points. The vectorial components of

relative displacement in normal and tangential direction are written as:

Au, = (u® ~u?).-nn (3.1)
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Figure 3.1: Interaction between two particles

and

Aug = (uf —ut) - Au, + RB xwB + R4 x (3.2)

where u4® = uf — u#, R4 = R4n and R? = R®n.
These relative displacements are used to calculate increments of normal and

shear forces, Af, and Afi, according to:

Af, = k,Au, (3.3)

and

Afg = kgAUg (3.4)

where k, and k; denote tl:> normal and tangential elastic stiffnesses, respectively,
which may be allowed to depend on Af, and Af;. However, since we are primarily
interested in nearly rigid particles, the exact dependence of the elastic stiffnesses on
Af is presumably not important (vide infra).

Furthermore, the force increments Af, and Af; are added, respectively, to

the forces f and f? that existed previously between two particles to yield the current
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values:
f. =2+ Af, (3.5)
and
f. = £ + Af, (3.6)

The components, f, = f,n and f; = fit, of the force vector act along
the directions of contact normal and tangent plane and are both set to be zero if
fa is not compressional (since cohesionless particles cannot sustain a tensile force).
A (Coulomb) sliding friction law is incorporated as follows: the magnitude of the
shear force f; given by eq. 3.6 is checked against the maximum possible shear force
magnitude:

(fe)maz = p[fa] + Ci 3.7)

where p(= tan ¢,) is the coefficient of sliding friction (defining the so-called angle of
intergranular friction ¢,), and C} represents cohesion, which is taken as identically
zero for the non-cohesive particles considered here. If |f] exceeds (f;)maz, sliding
occurs at the contact point. Under this circumstance, f; takes the value of (f:)maz,
and maintains its direction. Therefore, the total force and couple exerted on particle
A by particle B are given by:

f=f,+f (3.8)

M = R4 x f, (3.9)

3.1.2 The Governing Equations

The force f and couple M are next decomposed into three Cartesian com-

ponents, which yields in matrix form:

F = F° + k,5Au(AB) (3.10)

where, F = [f., fy, f:ymz,my, m,], the generalized force, represents the components of
force and moment exerted currently on particle A by B. F° = [f2, f2, 2, m2, mJ, m{]

represents the components of the force and the moment in the previous state. The
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matrix k5 is called the local contact-stiffness matrix, while Au(AB) is the general-

ized relative displacement between A and B, written as:

( uB —uy \
ul —ul
B_,A
auAaB)=| 7% |, (3.11)

rBuwB 4 rAwA
B, ,.B A, A
row, +r wy

B, .B A, A
\rw,-{-rw,)

where the subscripts denote the corresponding Cartesian component.
For all contacts on A to be in static equilibrium, the sum of generalized force
must vanish:
Y F=) F°+5 kipAu(4AB)=0 (3.12)
B B B
or

Y kasAu(AB)= - F° (3.13)
B B

In the current simulation, the displacement of each particle is additively
decomposed into two components: the macroscopically imposed mean W defined by
the global velocity gradient and a fluctuation u’, the latter being such that the force
balance eq. 3.13 is satisfied. Therefore, eq. 3.13 becomes:

Y kasAu'(AB) = — T F° - ¥k, AU(AB) (3.14)
B B B

for A=1,2,..-,N, with N denoting the total number of particles within the system.
This represents a system of quasi-linear equations for the (6/N) fluctuating particle

displacements:

Kx=b (3.15)

where K is the grand stiffness matrix, x = [ul(1), u}(1), u}(1),wi(1),w}(1),w’(1),- -+,
uz(N), uy(N), ul(N),w,(N),w;(N),w,(N)] the vector of the fluctuating displacements
and rotations, and b the unbalanced force arising from the mean displacements and

forces from the prior deformation step.
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3.1.3 Relaxation Method

The K matrix in ( 3.15) becomes singular whenever a cluster of particles
is isolated from the remainder, giving rise to “neutral” or “zero-frequency” elastic
vibrational modes representing a finite dimensional null space of K. To overcome
this singularity, Bashir and Goddard add a small artificial term to the diagonal of K
and then employ a gaussian elimination method to solve (3.15) for x.

In the present simulation, we utilize the relaxation method (originally due
to Southwell {121]) as our linear-equation solver, since it effectively cuts out the zero-
frequency modes of K. Being an iterative method, relaxation involves two procedures
to accelerate convergence. First, the relaxation order is determined by searching
for the residual of greatest magnitude |Ri|maz (the residuals R being the difference
between the right-hand and left-hand sides of (3.15), evaluated at the current values
of x in an iteration), then “relaxing” the corresponding equation by calculating a
new value of z; so that (R;)mer = 0. This modifies all other residuals, which also
depend on z;. The procedure is applied repetitively until all the residuals satisfy a
preset convergence criterion on some norm |R|. In the present context the fluctuations
determined by the relaxation method serve to move only those particles, or particle
clusters, having non-equilibrated forces or moments. Hence, isolated clusters do not
fluctuate, and we avoid the singularity in inverting (3.15).

For the packing algorithm described in the sequel, the relaxation method
is particularly effective, since in the early stages, the number of particle contacts is
small and only those particles not in equilibrium need be moved. Furthermore, the
relaxation scheme always finds the maximum unbalanced forces and adjusts particle

positions so as to balance them out.

i




T G G e B oe Ga G an e

25

(a) (b)

Figure 3.2: Microcells and the simulation cell in (a) initial, and (b) sheared configu-

rations

3.2 The Microcell Method and The Adjacency
Matrix

In the computer simulation of a classical mechanical system of N interacting
particles, it is generally necessary to search for all particles within the range of spatial
interaction of a given particle. In general, one needs N(N — 1}/2 such searches,
including a time-consuming evaluation of particle separations, a non-trivial task when
the number of particles is large. However, the search time can be reduced to O(N) by
means of spatial microcell methods [3] and the associated adjacency-matrix technique.

In the 2D case, for instance, the deformable simulation cell is divided into
regular lattice of nm x m initially square microcells as shown in Fig. 3.2. A microcell is
small enough to contain the center of at most one particle throughout the subsequent
cellular deformations. All microcells are then labeled ordinally. For each microcell,
the definition of adjacent microcells may include a neighborhood extending several
microcell layers outward, depending upon the range of the pair interaction considered.

Whatever the range, a matrix Ac defines the adjacency of microcells:
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. 1, if microcells ¢ and j are adjacent
Ac(i,j) = (3.16)
0, otherwise
where, i,j = 1,2,...,me(mc = nm xnm), which is nothing more than the connectivity
matrix of the associated graph [131]. We next define a second matrix Oc to represent

the occupancy of microcells by particles, such that:

Oc(ij) = { 1, if microcell ¢ is occupied by particle ; (3.17)

0, otherwise

where, i = 1,2,...,mec,and j = 1,2,..., N. A third matrix Ap is then used to represent

the adjacency of two particles:

. 1, if particles i and j are adjacent
Ap(i, ) = _ (3.18)
0, otherwise
where, ¢,7 = 1,2,..., N, as determined by their occupancy of adjacent or non-adjacent
microcells. This matrix gives the “Verlet neighbor list” of molecular dynamics (3] and

can be expressed as the matrix product:

Ap = OcT AcOc (3.19)

Once the microcell adjacency matrix Acis established, it remains unchanged
as long as the microcell topology is fixed during the simulation. Upon determination of
the occupancy matrix Oc at each deformation step, the particle adjacency matrix Ap
can be found easily by the simple operation (3.19). However, (3.19) is computationally

equivalent to:

Ap(i,j) = Ac(map(i), map(j)) (3.20)

where map defines a mapping array whose element map(t) equals the ordinal number
(1,2,...,mc) of the microcell occupied by particle i and which, therefore, corresponds

to the row vectors of Oc. Based on the computed particle adjacency matrix Ap, the
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current program searches for all particle contacts in order to construct the stiffness
matrix and to calculate contact forces.

In our simulation on rigid spheres, the size of the cubical microcell is chosen
such that its largest diagonal is equal to the smallest particle diameter in the system
to assure that not more than one particle simultaneously occupies a given micro-
cell. Furthermore, the largest particle diameter defines a cutoff distance at which one
must search for a potential contact with a neighboring particle. For a 2D monodis-
perse disk assemblage, therefore, two surrounding layers will be sufficient to cover
the cutoff distance, which means there are 24 microcells adjacent to each microcell.
At the start of a simulation, the microcell adjacency matrix Ac is constructed ac-
cordingly and remains unaltered throughout the computation. At each deformation
step, whenever particles move to new positions the mapping array is updated, which
is a rapid process. For a given particle, we need only look at the neighboring 24
microcells surrounding its micruccll to find the adjacent particles. In the worst case,
24 searches would be requirea if all neighboring microcells were occupied. Therefore,
12N provides an upper-bound on the total searches necessary if we consider a pair of
neighboring particles as one search.

In reality, the number of searches required depends upon the number of
particles lying within the cutoff distance or upon the system density and configuration.
In a 2D random particle assemblage, the average number of necessary searches is far
less than 24 per particle. Through our computations, we have found that the average
number of searches for each particle is about 6 for random loose-packed, and 11 for
random dense-packed monodisperse disk systems. Therefore, the total number of

searches is approximately 3N and 5.5N, respectively.

3.3 Random Configuration Generation

In the past thirty years or so, the packing of disks and spheres of equal
radii in 2D and 3D has been studied extensively by both experimental and theoret-
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ical means, in part because they serve as useful models for a variety of amorphous
materials such as molecular fluids and glasses. The macroscopic properties of gran-
ular materials and porous media have also been modeled by sphere packings. Three
models which are commonly employed for packings of disks and spheres are the dense
ordered packing, dense random packing, and loose random packing. The dense or-
dered packing for rigid spheres of equal radii occurs when the density is equal to 0.7405
in 3D(FCC or HCP). Similarly, the density is equal to 0.9069 in 2D(triangular). For
dense random packings, it is generally believed that the densities fall into a range
0.62 to 0.66 for 3D and 0.81 to 0.87 for 2D [19,50,71,114,133].

In a previous study of 2D disk assemblages, Bashir and Goddard [14] have
employed two distinct algorithms to generate two types of assemblages: imperfect tri-
angular close-packed for the monodisperse assemblage and pseudogravitational for the
polydisperse. Recognizing the limitation of those algorithms in allowing for variable
initial densities and for generating random isotropic configurations, we have developed
a packing algorithm which is capable of densifying an initially random loose config-
uration to any desired density for both monodisperse and polydisperse assemblages
by means of cyclic shear under isotropic confining pressure. One could if desired add

body forces such as gravity but we shall not consider them here.

3.3.1 The Shuffling Algorithm

There are many ways of realizing random sequences, the conventional one
being the standard random-number generation. For the purpose of generating random
particle assemblages, we introduce a new way of rapidly obtaining repeated random
sequences of numbers by means of a card-shuflling algorithm. The idea is to degrade
the order of a given set of numbers by means of a certain number of “riffle” shuffles.

In shufling theory [43], a single riffle shuffle can generate at most two in-
creasing sequences for an ordered n-member set S, where a increasing sequence is
defined to be a sequence whose members are in the increasing order of their ordinal

numbers in the original set S. If F,,(R) be the number of permutations of n items
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with exactly R increasing sequences, it can be shown that [108]:
R . n+1 .
F(R)=)_(-1¥( _ NR-j" (3.:21)
i=0 j

Shannon’s theorem [51] states that a permutation with exactly 2* increasing sequences
can be obtained by k riffle shuffles of the original set members in only one way.
Hence, in k riffle shuffles, the total number of permutations that can be

achieved is: \
2
Ta(k) = Z F.(R) (3.22)
R=1

and thus, the number of riffle shuffles &, sufficient to generate a sequence of random
numbers is given by [43]:

To(k) > n! (3.23)

(3.23) implies that for a deck of n = 52 cards, k = 7 riffle shuffles are sufficient to
obtain a nearly random sequence [43}.

In order to compare our shuffling algorithm with a standard random-number
generator, we have calculated the autocorrelation between the shuffled sequence of
fifty numbers and an initial ordered sequence, as well as the autocorrelation between
two random sequences obtained by a random number generator. Let S(i) represent
the elements, i = 1,2,...,n, of an n-member sequence, then, we employ as autocorre-
lation function between two such sequences S and S the formula:

4 _ Ik sinf2(SO() ~ Dsin{22(SWG) - D)
s (S0 — 1]

(3.24)

which treats the sequences as cyclical. We have also measured the CPU time required

by both techniques, and the details will be discussed below.

3.3.2 Shuffling vs The Random Number Generator

In our shuffling algorithm, a variant of the rifle shuffle is used, wherein each
shuffle consists of one random “cut” and “flip”, and one interlacing shuffle [43). To

compare our shuffling algorithm with a random number generator, we have computed
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Figure 3.3: A comparison between the shuffling algorithm and random number gen-

erator

the autocorrelations between the shuffled sequences of fifty numbers and the initial
ordinal sequence as a function of number of shufflings. Similarly we also computed
the autocorrelations between the first, second and succeeding sequences with the first
sequence of fifty random numbers generated by a random number generator in our
computer(a HP-7307M workstation). Fig. 3.3 indicates that sequences of random
number generated by the shuffling algorithm are as good as those obtained by the
random number generator in terms of randomness, even when we employ only seven
riffle shuffles for all of our computations. To compare performance in speed, we have
measured the CPU time required by both techniques. Fig. 3.4 clearly shows that the

random number generator uses approximately four times as much CPU time as the

riffle shuffle.

3.3.3 Initial Random Loose Configurations

In our packing algorithm the size of microcell is chosen sufficiently small so

as to contain the center of not more than one single particle under any circumstance,
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but also sufficiently large so as to minimize the total number of microcells.

Fig. 3.5 shows a 2D rectangular microcell ABCDA with two sides being
denoted by Az and Ay. When subject to a simple shear, the microcell ABCDA is
deformed to ABC'D’'A. If the largest dimension AC’ is chosen to be equal to the
smallest particle diameter we are assured that no two particles can simultaneously

occupy the same microcell throughout the deformation. Therefore, we have:

Figure 3.5: Microcell geometry
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Ay = min (3.25)
VOmaz +72)2 +1

Al‘ = Ay . rzy (3'26)

where, d,,;y, is the smallest particle diameter, Yma. is the magnitude of the total shear
strain, and ry, is the ratio of two sides (rz, = 1, usually).

By assuming an initial density and knowing the total particle volume, we
estimate the size of the simulation cell and divide the cell into a lattice of nm x
nm microcells. The microcells are then labeled ordinally from 1 to mc (=nm x
nm). To place N particles randomly in the simulation cell, we generate a random
sequence of microcells by employing the shuffling algorithm described before. We
then pick a microcell from the random sequence and place a particle randomly within
the microcell, so as to avoid overlap with previously placed particles, until all N
particles are placed successfully. Otherwise, the number of microcells is increased
and whole process is repeated. Fig. 3.6 and 3.7 show one such random loose-packed
configuration for 132 disks and its corresponding random dense-packed configuration.
Similar configurations for 48 polydisperse(multiple-sized) spheres are displayed in
Fig. 3.8 and 3.9.

3.3.4 Radial Distribution Functions

The radial distribution functions g(r) for the monodisperse assemblages, r
being scaled on particle diameter, have been computed and compared with those gen-
erated by the Percus-Yevick (P-Y) equation of statistical mechanics and by a Monte
Carlo (M-C) simulation [127,132,137], to verify that both our loose-packed configura-
tion and dense-packed systems are random for 2D as well as 3D assemblages. Fig. 3.10
shows the smoothed g(r) distribution function for 100 realizations of an initially loose-
packed configuration of 132 disks(density=0.43). Fig. 3.11 shows the smoothed g(r)
for 100 realizations of dense-packed configurations of 132 disks(density=0.80, close to
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34

Figure 3.8: Random loose-packed configuration for 48 poly-disperse spheres (den-
sity=0.30).
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Figure 3.9: Random dense-packed configuration and associated contact bond net-
work for 48 poly-disperse spheres(density=0.60). The thickness of rods represents

the scaled magnitude of normal force between particles.
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Figure 3.10: The simulated radial distribution function for 2D loose-packed config-
urations of 132 disks(discrete points), compared with the P-Y radial distribution

function(solid curve)

those for 2D random dense packing). For 3D, Fig. 3.12 shows the smoothed g(r) for
30 realizations of loose-packed configurations of 132 spheres(density=0.27). Finally,
Fig. 3.13 shows g(r) for 10 realizations of moderately dense-packed configurations
of 90 spheres(density=0.58). Our computed radial distribution functions reveal that
both the initially loose-packed and the final dense-packed systems are quite random,
at least if one accepts the molecular model as a standard.

The text of this chapter, in part, appeared in [58). The dissertation author
was the secondary author of the publication, and shared equal responsibility with

other co-authors.
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Figure 3.11: The simulated radial distribution function for 2D dense-packed config-
urations of 132 disks(discrete points), compared with the M-C radial distribution

function(solid curve)
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Figure 3.12: The simulated radial distribution function for 3D loose-packed config-
urations of 132 spheres(discrete points), compared with the P-Y radial distribution

function(solid curve)




38

8.0 v T T

25

Figure 3.13: The simulated radial distribution function for 3D moderately dense-
packed configurations of 90 spheres(discrete points), compared with the P-Y radial

distribution function(solid curve)




Chapter 4

Experimental Investigation

The following sections describe the triaxial compression experiment employ-

ing steel balls as conductive granular particles.

4.1 Equipment

4.1.1 Compression Tester

The current experiments employ a commercial compression tester as loading
frame for the test cell. The 911 MTT-02/10 compression tester, manufactured by
Comten Industries Inc., is a motorized device with a digital interface and a variable
speed drive. It consists of two parts, the main unit and a monitor/controller. The
loading force is measured and displayed on the monitor/controller. The displacement
of a specimen is measured with a separate 500 DC-E LVDT linear displacement

transducer manufactured by Lucas-Schaevitz.

4.1.2 Triaxial Cell

The triaxial cell, a redesigned version of standard commercial cell with ad-
ditional provision for conductivity measurement, is schematically illustrated in Fig-

ure 4.1. Furthermore, the cell dimensions have been reduced in order to fit into the
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compression tester, and a bellows is added to the top cap to prevent escape of con-
fining fluid and to eliminate the friction between piston (shaft) and its bushing, a
problem that is inevitable in the conventional design of the triaxial cells. The cell
is made of stainless steel, with a transparent plexiglass cylindrical body. The base
adaptor, with a porous steel screen installed on the top, has a channel for connection
through the cell base to a vacuum system, for initial specimen preparation, or to
the atmosphere for drained tests. The loading cap has also a porous steel screen at
the bottom and an eccentric, small-diameter hole on the top to release air during
the preparation of saturated specimens (not used in the current experiments). This
small-diameter hole is always blocked by the threaded plug during experiments to
prevent compressed air from escaping through the specimen. In the center of the
loading cap, there is a conical recess, into which the end of loading shaft seats. In the
top cap, there is an outlet from which the compressed air enters the cell chamber to
form a confining pressure around the specimen. The LVDT device is mounted on the
top cap to measure the end displacement of the specimen. The external connection

to measure the resistance through the granular specimen is also shown in Fig. 4.1.

4.1.3 Digital Image Processing System

A PC-based digital image acquisition/processing system, used in a previous
study [140], is employed for data acquisition. The hardware consists of a Hitachi
KVC-150 video camera, a Toshiba M-6100 VCR, a Sony PVM-1271Q monitor, a
IBM-PC compatible and an embedded PCVISIONplus PFGPLUS-512-3-u-XT/AT
frame grabber, manufactured by Image Technology Inc.. The software includes a
Werner-Frei Associates Image Lab and Imagetool programs.

The basic components of the system and their mutual relation are depicted

in Figure 4.2.
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Figure 4.2: Digital acquisition/processing system, (after Zhuang 1991).
4.2 Materials and Specimens

The test material used as particles in the triaxial compression experiments
is 440-C stainless steel balls provided by Thomson Precision Ball Company, Inc., the
physical properties being listed in Table 4.1 in which the first four properties are
provided by the manufacturer, the fifth is based on our own measurement, and the
last one is found from CRC Handbook of the tables for Applied Engineering Science
[21]. An interparticle friction coefficient g = 0.15 was measured by gluing the steel
balls to a plate and observing the critical angle of sliding down a second inclined
stainless steel plate. The granular assemblages consisted of a randomly packed beds
of approximate 3400 of the above steel balls having a 3.81cm diameter and a 4.9cm
height. The initial packing densities were around 0.6, which is close to that of a
random dense packing of spheres. The ambient confining pressure is kept constant at

0.48kg/cm? throughout the course of the deformation.
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Diameter (cm) 0.278 + 0.000064
Density (g/cm?) 7.667
Elastic modulus (kg/cm?) 2.039 x 108
Poisson ratio 0.29
Friction coeflicient 0.15
Electrical conductivity (ohm - em) ! 16670.0

Table 4.1: The physical properties of the steel balls employed in the experiments.

4.3 Specimen Preparation and Experimental Pro-

cedure

First, the latex membrane is attached to the base adaptor, then stretched
to the top of the split-cylinder, two-piece mold to form a cylindrical space. The steel
balls are poured into the mold space in five portions, each is followed by rod-stirring,
a procedure known as “rodding” in the soil-mechanics community, in order to achieve
a consistent initial packing condition. The loading cap is then placed on the specimen
and held by the membrane. A vacuum is then applied to withdraw the air from the
specimen, which makes the specimen rigid under the atmospheric pressure. After the
two-piece mold is removed, the plexiglass cylindrical body together with the top cap
is installed on the cell base and tightened with three tie bars. The cell is then placed
between two platens of the compression tester. The LVDT transducer is mounted
on the top cap of the cell. Laboratory compressed air is used to fill an approximate
0.05m3 tank serving as air reservoir, which maintains a constant confining pressure
during the experiments. Simultaneously, a confining pressure is created inside the
triaxial cell that is always connected to the air reservior. The compressed air is shut
off when the desired pressure p is reached. The vacuum is then turned off, and a
valve is opened to vent the air in the specimen to accommodate drained tests. The
specimen preparation is now complete,

Following the above specimen preparation, the compression tester is turned
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on. The wires are connected between the cell and one electrical multimeter, which
is utilized to measure the electrical resistance through the specimen. The LVDT
is connected to a second multimeter, which measures the voltage output from the
LVDT, thereafter being converted to the axial displacement. The video camera and
VCR are set up to record the display readings of the monitor/controller and two
multimeters. Everything is then ready for the experiment.

VCR recording and the compression tester are then started. The loading
speed is slowly increased from zero to approximately 0.1cm/min. This loading process

is terminated at 20% axial compressional strain.

4.4 Data Analysis

With the help of the image processing system, about 30 select frames are
extracted from the recorded video image of the entire experiment at different stages,
and the force, resistance and voltage readings are read off for later data analysis.

The measured force, corrected for the bellows spring force, gives us the axial
force exerted on the specimen by the shaft. Then we compute the vertical stress over

the specimen according to:

= 4.1
o1 p+Am,, (4.1)

where p is the confining pressure, F is the axial force exerted on the specimen by the
shaft, and A, is the area of the loading cap. The horizontal stresses o, and o3 are
equal to the confining pressure p.

According to the definition, we obtain

L
T RA,

where R; is the total resistance through the specimen, K* is the effective conductivity

Kl

(4.2)

of the medium, L is the specimen length and A, is the cross-section area of the

specimen.
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4.5 Measurements of Contact Resistance

Faced with the extremely large discrepancy between the experimental mea-
surements and the results of the initial numerical simulations utilizing eq. 2.23 to
compute the contact resistance, we were lead to identify the underlying cause. As
a matter of fact, there has been ongoing research into electric contact resistance for
the past several decades [64,60,61,6,125,68,83,24,119,25], since almost all electrical
or electronic equipment contains numerous contacts through which the current and
voltage signals are transmitted, and the failure of even a single contact can result
in a complete system failure. From the above literature survey, one finds that the
resistance at a real contact may be much higher owing to the various reasons outlined
in the section 2.3.2. This ultimately results in lower effective conductivity of granular
medium than that predicted by the theory.

Based on this understanding, we conducted an experiment to measure the
electrical contact resistance in a single column of steel balls as a function of axial
load. The experimental set-up is schematically depicted in figure 4.3. A stack of balls
is confined within a reinforced quartz glass capillary tube, with an inner diameter
0.29cm, slightly larger than that of the steel balls, and loaded with dead weight
from the top via a piston. The resistance is measured with a multimeter at various
loads. To avoid all contacts between the balls and flat surfaces, the top and bottom
steel balls in the column, consisting of five balls, are soldered to the piston and the
flat base, respectively. The relationship between resistance and load, the average
result of seven experiments, is plotted in figure 4.4 and compared with that predicted
by Eq. 2.23. The overall scatter is within 20% of the average values. The large
scatter is probably ascribed to the nonuniformity of the ball surfaces and associated
contamination films. One can see a very strong dependence of resistance on the load,
with a slope of approximately 2.4 compared with 1/3 given by Hertzian theory. This
observation suggests that an oxide film on the ball surface ruptures and deforms

plastically under the applied load.
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Figure 4.3: Experimental set-up used to measure the electrical contact resistance.

The load-resistance curve depicted in Fig. 4.4 represents the case of loading.
Experimental observations revealed that the load-resistance curve for unloading is
lower than that of loading. This hysteresis is probably due to the plastic deformation
of asperities and irreversible rupture of the superficial oxide film during loading.
While the contact between two balls can experience loading and unloading during the
deformation of granular media, the localized contact regions on the ball surfaces keep
changing due to the relative movement (rolling and sliding) between balls. Therefore,
it is plausible to employ the normal load-contact resistance relation of Fig. 4.4 for

loading for purposes of numerical simulation.
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Chapter 5

Simulation Results

A series of numerical simulations on idealized granular assemblages have
been conducted to investigate the effects of microscopic and microstructural properties
of the constituent particles and their assemblages, including (Coulomb) interpa “cle
friction, nonlinear contact mechani¢s and initial packing density, on the mechani-
cal behavior. Of particular interest is the Reynolds dilatancy, shear strength and
the evolution of granular microstructure of idealized granular assemblages subject to
constant mean confining pressure. Numerical simulations of the triaxial compression
test have been conducted to simulate the effects of the initial density on the mechan-
ical behavior as well as the scalar transport properties. The mechanical behavior is
discussed first in this chapter, while transport properties will be covered separately

in the following chapter.

5.1 Interparticle Friction

This study involves both 2D and 3D mono- and poly-disperse granular as-
semblages subject to simple shear deformation under constant mean confining pres-
sure. The 2D assemblages consist of 132 disks initially packed to random dense
packing with about 0.82 area fraction. On the other hand, the 3D granular assem-

blages contain 48 spheres initially packed to an approximate dense random packing
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with 0.60 volume fraction. The nondimensional radii of the particles are equal to
1.0 for monodisperse systems, and equal to 0.8, 1.0, and 1.25, respectively, in the
polydisperse systems, with approximately same total volume of particles of the three
different sizes. Thus, we use 64 disks of radius 0.8, 41 disks of radius 1.0 and 27
disks of radius 1.25 for 2D systems, and choose 27 spheres of radius 0.8, 14 spheres
of radius 1.0 and 7 spheres of radius 1.25 for 3D systems. Normal and shear contact
stiffnesses are taken to be k, = 1.0 and k; = 0.8, respectively.

By a scaling based on contact stiffness and particle radius, one can specify
an externally imposed nondimensional pressure (=p,R,/k,,, where p,, k. and R,
denote the real confining pressure, normal stiffness and particle radius.), under which
interparticle overlap(proportional to normal force) will not exceed 0.1% of particle
radius throughout the simulations since we are primarily concerned with nearly rigid
particles [14]. This pressure is found to be 6.0 x 10~% for 2D experiments and 4.0 x
10-3 for 3D experiments, and is maintained during the initial packing process and
subsequent shearing. Both the 2D or 3D test assemblages are subjected to simple
shear up to 20% total strain with different interparticle friction coefficients under
otherwise identical conditions.

To further clarify the influence of particle friction on Reynolds dilatancy of
randomly dense-packed granular a < :mblages, we carried out several simulations on
both 2D and 3D, and mono- as well as poly-disperse idealized granular assemblages
with 4=0.0, 0.3, and 0.5, respectively. The following conclusions can be drawn from
the results, presented in Figure. 5.1, 5.2, 5.3,and 5.4: the dilatancy increase with
increasing magnitude of u, which is in agreement with previous results {39,18,33],
including the results for polydisperse (random-packed) cases found by Bashir and
Goddard[14). However, this finding is contrary to Reynolds’ original hypothesis on
the random dense packing of granular assemblages, as interpreted. The stress ratio
(01— 03)/p, where 01, o3 and p are major, minor and mean stress, also increases with
increasing magnitude of . Polydispersity is found to have a noticeable effect on the

mechan.:al behavior of granular assemblages.
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From Fig. 5.5 and 5.6, one finds that the coordination number decreased
drastically in the start of shearing, usually within 1% of shear strain, which indicates
that a significant particle rearrangement took place early in the shearing deformation
[79,95,96]. The coordination number then fluctuated about a roughly constant level
throughout the subsequent deformation [18]. A higher interparticle friction generally
results in a lower coordination number after granular assemblages yield. Although
the computed coordination rumber varies with shear strain and interparticle friction,
it is found to be, in both 2D and 3D cases, always greater than the geometric critical
coordination number Z, = ﬁ (=2ford=2and 1.5 for d = 3, here, d, > 1, denotes
the number of dimensions [116]). Z., at which there exists an infinite cluster of bonds
across a medium according to percolation theory [116,75], is a dimensional invariant
insensitive to the details of the lattice studied. The geometric percolation threshold p.
is shown to be about 0.347 for 2D triangular lattice and 0.119 for FCC lattice [116],
while the elastic (central-force, omitted hereafter) bond percolation threshold p..n,
which would associate with solid behavior of bond networks at small strain, is found
to roughly equal to 0.58 for 2D triangular lattice and 0.42 for FCC lattice [49]. Here,
we define a ratio Z/Z,,,, representing the fraction of active “bonds™ in the network
of particle contacts compared with the coordination number of the densest possible
systems, where Z being the coordination number of a system and Z,,,, the maximum
possible coordination number, for instance, 6 for 2D triangular lattice and 12 for 3D
FCC lattice. In 2D monodisperse case, from Fig. 5.5, one finds a ratio 0.6 at initial
stage, slightly larger than the elastic bond percolation threshold, and a range from
0.4 to 0.5, dependent on interparticle friction, after early shearing deformation, which
is between the geometric and elastic percolation threshold. Similar results are found
in 3D monodisperse case. In a previous 2D work, however, Bashir and Goddard [14]
found the ratio very close to the geometric percolation threshold after initial 3% shear
strain, which is much smaller than the elastic percolation threshold.

Based on detailed microscopic observations, we find that: (1) granular mi-

crostructure evolves such that contact normals concentrated in the direction of major
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Figure 5.1: Effects of interparticle friction coeflicients on dilatancy of 2D assemblages

subjected to simple shearing deformation.

principal stress during the shearing deformation [124}; (2) the granular assemblage is
composed of two types of region: a major skeleton composed of heavily stressed chains
of particles and less stressed regions surrounding this skeleton, with most of contact
breaking and making occurring within the latter region and with the skeleton remain-
ing relatively unaltered for a small incremental deformations; (3) particle rolling is

major deformation mechanism, especially when interparticle friction is large[102].

5.2 Nonlinear Contact Mechanics

As we discussed in section 2.2, the contact stiffness is generally a function

of load, often well represented by the power law
k,=Cf) (5.1)

where C is a material constant, f, normal load, and for example, the exponent takes

on values A = 1/3 for Hertzian elastic spheres and A = 1/2 for a conical tip pressed
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Figure 5.2: Effects of interparticle friction coefficients on dilatancy of 3D assemblies

subjected to simple shearing deformation.
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Figure 5.3: Effects of interparticle friction coefficients on shear strength of 2D assem-

blages subjected to simple shearing deformation.
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Figure 5.4: Effects of interparticle friction coeflicients on shear strength of 3D assem-

blages subjected to simple shearing deformation.
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Figure 5.5: Effects of interparticle friction coeflicients on average coordination number

of 2D assemblages subjected to simple shearing deformation.
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Figure 5.6: Effects of interparticle friction coefficients on average coordination number

of 3D assemblages subjected to simple shearing deformation.

against a plane [57]. Accordingly, the relationship 3.3 between increments of relative
displacement and contact force is nonlinear.

Since the linear model A = 0 not only offers simplicity but may be able to
provide qualitatively valid insights into the link between micromechanical properties
and macroscopic behavior (17,18,39,40,41,128] and, since we are mainly interested
in ideal rigid limit [14], most of our simulations have been carried out for linear
contacts. However, we felt that it is important to check its validity and the effects of
nonlinearity.

In the present simulations we employ a monodisperse system with 48 spheres
packed to initial density ¢ = 0.60 and interparticle friction 4 = 0.15. The system
is subjected to the triaxial cor - ssion under a constant mean confining pressure
p =4 %1075, X values are selected as 0.0, 1/3, 1/2, and 1, with 0.0 representing the
linear contact and 1.0 representing extreme nonlinearity. The tangential stiffness k,

is simply taken to be 0.8k,.

From Fig. 5.7, one sees that contact nonlinearity has no apparent influence
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Figure 5.7: Effects of non-linear contact on dilatancy of 3D assemblages subjected to

triaxial compression.
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Figure 5.8: Effects of non-linear contact on average coordination number of 3D as-

semblages subjected to triaxial compression.
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on Reynolds dilatancy in the small- to intermediate-strain region, but some effects
are observed at higher axial strains. Moreover, Fig. 5.8 indicates that the average
number of particle contacts is, roughly speaking, not affected. It is expected that the
nonlinear contact law will tend to make the strong contacts (in terms of contact force)
stronger, and the weak contacts weaker, therefore, changing the force distribution.
Although we do indeed observe variations in the force distributions, the different
degrees of nonlinearity yield only a small deviation in the average normal force, for
the cases A = 0.0, 1/3 and 1/2 (see Fig. 5.9). Finally, from the results in Fig. 5.10,
one sees that the strength of the idealized granular assemblages tends to increase
somewhat with the increase of nonlinearity. The small effects of contact nonlinearity
on the mechanical behavior indicate that a complicated nonlinear contact law is less

significant in modeling the mechanical behavior of granular materials.

5.3 Effects of Initial Specimen Density

To simulate the effects of the initial void ratio or density on the behavior
of mechanical as well as the scalar transport properties, we have generated three
random monodisperse packings of 100 spheres with different initial densities, 0.52,
0.56 and 0.60, respectively. The interparticle friction coefficient p is taken to be 0.15.
All three packings are subjected to the triaxial compression deformation under the
same nondimensional confining pressure po = 4 X 10~% in the directions normal to
compressional axis.

Fig. 5.11 and 5.12 indicate that, for initially loose systems such as those
with ¢ = 0.52 and 0.56, densification or negative dilatancy occurs initially and per-
sists throughout the deformation. The potential for densification increases with the
decrease of the initial density [91]. On the other hand, the initially dense system,
with ¢ = 0.60, experiences positive dilatancy from the very beginning of the defor-
mation. Nevertheless, the densities of three systems, either contracting or expanding,

tend to approach the same critical value asymptotically. Fig. 5.13 shows that, for
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loose systems, the shear strength increases monotonically. However, for the initially
dense system, its strength increases first until a peak value is reached, then decreases.
Similar observations in real triaxial compression tests are to be discussed in follow-
ing chapter. Again, both the loose and dense systems seem to possess an identical
ultimate strength after being subjected to a large deforraation [91]. The initial coor-
dination number increases as the density rises. Upon deformation, the dense system
initially experiences a significant loss in the number of contacts, whereas the loose
system gains contacts. However, both systems approach approximately the same
coordination number at roughly 1% axial compressional strain, and then maintain
fluctuating but slightly increasing values (see Fig. 5.14). Next, I shall attempt to
elucidate the observed behavior.

In a loose system, the initial number of interparticle contacts and coordi-
nation number are low, and just exceeds slightly the elastic-percolation threshold, at
which there just begin to exist sample-spanning chains of particles capable of support-
ing an ambient confining stress (Goddard 1990). However, due t~ lack of sufficient
contact force from neighboring particles, such chains are highly unstable to (Euler)
buckling. Under these circumstances, one can anticipate that a given pair of adjacent
particles in such a chain will accommodate axial compression with a small rotation
normal to their line of centers until such rotation is hindered by lateral contact with
neighboring particles. By means of this process, a given particle chain will generally
undergo a kind of lateral ‘branching’ until it becomes capable of supporting increased
axial compressive stress (Goddard 1990). Therefore, the overall granular structure is
less stable and more likely to collapse to a more stable, denser system upon deforma-
tion and to generate load-bearing capability. Such capability is further enhanced as
the system gets denser. On the other hand, the dense system will have to expand in
order to deform, hence loses contacts initially. Owing to the volume exvansion against
the ambient confinement, the system exhibits shear strength, but further dilatancy
reduces the system density and decreases the stability of the granular chain structure

and its ability to support the external loads. This explains the after-peak strength
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Chapter 6

Electrical Conductivity

6.1 Numerical Simulations

For the purpose of data validation, the computer code is modified specifically
to simulate a triaxial compression experiment over an idealized granular assemblage
with the physical properties of steel balls, listed in table 4.1, and experimental loading
conditions as input parameters. The mechanical behavior as well as the electrical
transport properties of the systems are investigated simultaneously.

The idealized system, as schematically depicted in figure 6.1, contains 100
equal size spherical particles in a periodic cubic cell. The system, being confined in
X and Y directions with a constant pressure pg, is compressed in Z direction. To
simulate the effects of the initial density on the mechanical as well as scalar transport
properties, we have generated three isotropic random packings of sphere assemblages
with initial densities being 0.52, 0.56 and 0.60, respectively. The interparticle friction
coefficient u is taken to be 0.15, corresponding to the measurements on the real
‘dirty’ steel balls (whose definition is to be provided in Section 6.2). The computed
dimensionless normal force is converted to real force by the scaling factor based on the
particle radius and ambient confining pressure so that the contact resistance between
two particles can be calculated with the experimentally determined load-resistance

relation given in figure 4.4, also corresponding to the ‘dirty’ steel balls. The tangential
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Figure 6.1: The idealized system in triaxial compression (¢ = 0.60).
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Figure 6.2: Relation between mean effective conductivity and specimen density.

force is not considered in evaluating the contact resistance, since, according to our
experimental observations, the tangential force has no apparent effert. on the contact
resistance. The results reported in this section correspond to the physical properties
of ‘dirty’ steel balls.

It is generally true that a denser system should possess higher conductivity or
lower resistivity owing to the fact that medium is better connected so as to offer more
paths or branches for current to pass through. Fig. 6.2, where the mean effective (the
word ‘effective’ and corresponding superscript ‘*’ is henceforth omitted) conductivity
is the average of conductivities K., Ky, and K,; in X, Y and Z directions, reveals
this trend although more fluctuation are observed in high density region.

Next, we shall consider the changes of the conductivity K, in the compres-
sional (or Z) direction during the course of deformation. From Fig. 6.3 and 5.13, it is
not difficult to see the similarity between the behavior of shear strength and conduc-
tivity, although there are more fluctuations in the conductivity than in strength. For
the initially dense system, with ¢ = 0.60, the conductivity increases first to a peak

within the first 2% of axial strain, then fluctuates wildly with a decreasing trend.
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Figure 6.3: Dependence of conductivity on axial strain and initial density.

This behavior can be correlated to the mechanical behavior, particularly deformation
mechanism of the granular assemblages.

Upon the compression, load-bearing chains are built up gradually in the
Z direction in order to sustain stress anisotropy, which create easier paths for cur-
rent to pass through. Therefore, in early stage of deformation, the conductivity
increases steadily despite the fact that system experiences a loss in total number of
contacts (see Fig. 5.14), note that the loss of contacts happens mainly on X-Y plane
or the direction of minor principal stress. Owing to the dilatancy of the system (see
Fig. 5.11), these granular chains become less stable progressively. When the system
is further expanded, these major load-bearing chains finally buckle. The branching-
out of chains diverts current from the preferred direction. Therefore, one observes
the after-peak decrease in conductivity. The subsequent built-up and buckling of
new heavily-stressed chains is primary cause of the fluctuations in conductivity. On
the other hand, the densification in the loose systems during the deformation tends
to stablize these progressively loaded chains, thus resulting in a steady increase of

conductivity.
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Figure 6.4: Evolution of principal value ratios for stress, fabric and conductivity

(¢ = 0.60).

The principal value ratio, the ratio of major to minor principal value of
tensors such as stress or fabric, is often used to characterize the state of anisotropy.
Following is an attempt to correlate the evolution of the anisotropy of three tensors,
namely stress o, fabric N and conductivity K tensors. At the start of compression,
the anisotropy of the assemblages is induced progressively. After reaching a peak,
it remains relatively unchanged throughout the deformation. From Fig. 6.4, one see
fabric is not very sensitive to the change in stress state, while conductivity is more
sensitive.

Fig. 6.5 and 6.6 clearly suggest strong correlations between conductivity,
stress and fabric tensors. Note that the lines of linear regression almost pass through
the point (1,1) in the plots, which represents the isotropic relation between these
tensors.

The results shown in Fig. 6.7 indicate that the mean field theory of Batch-
elor and O’Brien underpredicts the effective conductivity slightly but can be used to

understand the qualitative scalar transport bekavior of granular materials.

]
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Figure 6.7: Comparison between the exact solution and mean field theory in predict-

ing the effective conductivity of idealized granular assemblages (¢ = 0.60).
6.2 Experimental Verifications

Three triaxial compression tests have been carried out, one with ‘clean’ balls
and two with ‘dirty’ balls, at approximate ¢ = 0.60 initial densities. Here, clean balls
refer to those, whose protective oil film was just removed and cleaned by Aceton sol-
vent, and are expected to have no much contamination film on the ball surface (or low
contact resistance, however, the normal load-contact resistance relation was not ex-
perimentally determined immediately after cleaning process unfortunately), whereas
the dirty balls refer to those, which have been exposed to normal laboratory environ-
ment for approximately four months after being cleaned with Aceton, thereby, possess
thicker insulating contamination film (or high contact resistance), and for which the
load-contact resistance relation (Fig. 4.4) and interparticle friction coefficient have
been measured. The experimental results with clean balls are given here solely for
the comparison against the experimental results with dirty balls. It is not intended

to compare the experimental results with clean balls to the results of the numerical
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Figure 6.8: Comparison of shear strength between numerical simulation and experi-

ments with dirty balls (¢ = 0.60).

simulations, since no numerical results for clean balls are available.

Plots Fig. 6.8 and 6.9 indicate that the results of numerical simulation and
physical experiments with dirty steel balls are in qualitative agreement, and that the
simulation is capable of predicting the mechanical and scalar transport properties
of granular assemblages. Comparison of the experimental results between clean and
dirty balls in Fig. 6.9 also reveals that the individual contact resistance can drastically

affect the conductivity of the medium.
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Chapter 7

Conclusions and

Recommendations

We have developed a new version of a quasi-static simulation of the me-
chanics and conductivity of sphere assemblages by introducing several new numerical
techniques, including a relaxation method which is shown to be a useful tool to over-
come a singularity in the quasi-linear system of equilibrium equations. The computer
code is versatile enough to allows one to simulate any deformation history and to
study both mechanical and scalar transport properties of idealized granular assem-
blages simultaneously.

The results of the present investigation show that: (1) interparticle friction
has great influence on Reynolds dilatancy for random dense-packed mono- as well as
poly-disperse granular assemblages, a result contrary to Reynolds’ original hypothesis;
(2) the use of linear contact mechanics is justified near the ideal rigid-particle limit;
(3) scalar transport properties such as electrical conductivity can be employed as a
good indicator of the stress anisotropy and microstructural particle-contact topology,
(4) the comparison between numerical results and experimental findings reveals that
the numerical model is able to qualitatively predict the mechanical as well as scalar
transport properties of idealized granular assemblages; (5) the contact resistance be-

tween stee] balls deviates greatly from the theoretical prediction and depends strongly
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on the normal load.

Although the present numerical algorithm can simulate sphere assemblages
consisting of multiple-sized particles, an extension to include ellipsoid particles is
called for in order to study the particle shape effects on the mechanical behavior as
well as scalar transport properties of granular assemblages. To examine the Hertzian-
contact resistance theory, one should find new type of particles with better surface
smoothness and no surface resistance film. One of the promising materials is ion-

exchange beads, provided that they are not too soft.




Appendix A

Flow Chart for the Numerical
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Appendix B

Computer Code

program UNIV3D

c---Variable definition:

OO0 000000000 00000000000 O0O0O00O06O0O0000O00

dm--number of dimensions

npt--number of particles

idim--number of equations in quasi-linear system of equation
nl--number of microcells in X, Y and Z directions
mxnc--maximum number of microcells

mxc~-maximum number of contacts a particle could possibly have
nnb--the number of adjecent microcells around a microcell
r--radii of particles

X,y,z--position coordinates of particles at prior step
xm,ym,zm--position coordinates of particles given by mean deformation
xt,yt,zt--position coordinates of particles given by "mean + fluctuation"
ux,uy,uz,vx,wy,wz——fluctuation displacement
uxm,uym,uzm,wxm,wym,wzn--mean displacement
uxt,uyt,uzt,wxt,vyt,wzt--total displacement

a--grand stiffness matrix

b--vector of unbalanced force

ak,bk--temparory 6 by 6 matrix

xn-~correction to the fluctuating displacement

dxn~-increment of xa

res—-residual of the system of quasi-linear equations
fn0--normal force between particles at prior step

fnl--normal force between particles at curren- step
1t0--tangential force between particles at prior step
fti--tangential Jorce between particles at current step
tft--total tangential force between particles at current step
dft--increment of tangential force between particles at current step
tfor--total force between particles at current step
sfx,sfy,sfz--total force on each particle

smx, smy,smz-—-total moment on each particle

nij~--fabric tensor

di--distance between adjacent particles

nx,ny,nz--contact normal

s--stress tensor

strn0,strn--deviatoric strain rate tensor

15
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sstrn,psstrn--total strain

shear--shear strain increment

cond--conductance matrix

brx,bry,brz--net unbalanced current due to mean potential gradient
cur--interparticle current

voltf--fluctuating potential

c_eff--effective conductivity tensor

ih--number of contacts for a particle

adjc--adjacency matrix of microcell

kxx,kyy,kzz-~-for the periodicity of simulation cell
map0--microcells occupied by npt particles at prior step
map--microcells occupied by npt particles at current step
mappartO--particles occupying the microcells at prior step
mappart--particles occupying the microcells at current step
kphi,ktheta--contact normal distribution
ctpx,ctpy,ctpz--coordinates of contact points
thkn,thkt--scaled magnitude of normal and tangential foxce
mshO,mshi--random sequences of microcells
khlf1,khlf2--first and second half of a random sequence

OO0 0000060408600 0O0O06O06O0O0O08a-O0

c-—-Definition of input variables

iprepk--job option(0 for packing, 1 for repacking, 2 for relaxing,
3 for deformation)

irmax--number of realizations

istp--number of deformation steps

outmax--maximum number of outer loops

inmax--maximum number of inner loops

nrecordl,nrecord2--number of data points to be saved

shearm--shear strain increment

sigma0--controlling pressure

epsa--a small number

epso--allowance for the pressure balance

epsi--allowance for the force balance

den_i--initial density of loose packing

den0O--desired packing density

iseed--seed for random number generator

strn0--deviatoric strain rate tensor

rl,r2,r3--particle radii

ckn,ckt--normal and tangential contact stiffness

cs--interparticle friction

orf--overrelaxation factor

irel--maximum number of iterations in relaxation method

nshuf--number of shuffling

1f1lip—-number of flip in shuffling

nrif--number of riffle in shuffling

itrplmax--maximum number of trials in placing a particle in a microcell

without overlaping adjecent particles

devml to dv8--controling parameters for packing

i_cumu--an integer number

itrialm--maximum number of trials of packing to desired density

e_ym--elastic modulus

OO0 000 0000000000000 O0000600000000
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pois_r--Poisson’s ratio

barkn--scaling factor of normal contact stiffness
barR--scaling factor for radii

grad--potential gradient

conk,conb~-two parameters in load-resistance relation
isigm--pressure control parameter

O 0 0 000

implicit real (a-h,o-z)
implicit integer (i-n)
integer dm

al s an an e

parameter{(dm=3,npt=48, idim=6+¢npt,n1=8,mxnc=nls+dm,mxc=12)
parameter (dm=3,npt=48,idim=6snpt,nl=10,mxnc=nl**dm,mxc=12)
parameter(dm=3,npt=100, idim=6+npt ,n1=9,mxnc=nl**dm,mxc=12)
paraneter (nnb=342,pi=3.1415927,2er0=0.0,izero=0,0ne=1.0,val=1000.)
real x(npt),y(npt),z(npt),r(npt)

real xm(npt),ym(npt),zm(npt),xt(npt),yt(npt),zt(npt)

real ux(npt),uy(npt),uz(npt),uxm(npt) ,uyn(npt),uzm(npt)

real wx(npt),wy(npt),vz(npt),wxm(npt) ,vym(npt),vzm(npt)

real uxt(npt),uyt(npt),uzt(npt),vxt(npt),wyt(npt),wzt(npt)

real a(idim,idim),b(idim),ak(6,8),bk(6,6),xn(idim)

R
|
0 o0

real fn0(npt,npt),fni(npt,npt),t2t(npt,npt)

real rtO(npt,npt,dm),ft1(npt,npt,dm),dft(dm)

real sfx(npt),sty(npt),sfz(npt),smx(npt),smy(npt),smz(npt)
real tfor(npt,npt),di(npt,npt),dxn(idim)

real nx(npt,npt),ny(npt,npt),nz(npt,npt),nij(dm,dm)

real res(idim),s(dm,dm)
real ctpx(npt,mxc),ctpy(npt,mxc),ctpz(npt,mxc)
real strn0(3,3),strn(3,3),sstrn(3,3),psstrn(3,3),starin(3,3)

real cond(npt,npt),brx(npt),bry(npt),brz(npt)

real cur(npt,npt),voltf(npt),c_eff(3,3)

real cxn(npt),cres(npt),cdxn(npt)

integer ih(npt),kxx(mxnc,nnb),kyy(mxnc,nnb),kzz(mxnc,nnb)
integer adjc(mxnc,nnb),mcont(npt,npt),map(npt),mapO(npt)
integer mappart(mxnc),mappartO{(mxnc)

integer stest,outmax,highstrn,kphi(12),ktheta(24)
integer thkn(npt,mxc),thkt(npt,mxc)

integer mshO(mxnc),mshi{mxnc) ,khlfi(mxnc),kh1f2(mxnc)

open(unit=10,file=’3dat’,status=’o0ld’)

open(unit=30,file=’condu’,status=’unknown’)

c open(unit=49,file=’inner’,status=’unknown’)
c open(unit=50,file=’outer’,status=’unknown’)
c open(unit=51,file="displ’,status="unknown’)

open(unit=563,file=’slope’,status=’unknown’)
open(unit=54,file=’phi’,status=’unknown’)




open(unit=55,file=’nbond’,status="unknown'’)
open(unit=56,file=’theta’,status=’unknown’)

open(unit=61,file=’predat0’,status='unknown’)
open(unit=62,file=’coord0’,status='unknown’)
open(unit=71,file=’'predati’,status=’unknowvn’)
open(unit=72,file=’coord1’,status=’unknown’)

open(unit=68,file=’fnav0’,status=’unknown’)
open(unit=69,file='fnav’,status=’unknown’)
open(unit=70,file=’'fn’,status=’unknown’)

open(unit=80,file=’coord’,status=’unknown’)
open(unit=81,file=’contc’,status='unknown’)
open(unit=82,file=’contp’,status=’unknown’)
open(unit=83,file=’thick’,status=’unknown’)
open(unit=92,file=’force’,status=’unknown’)
open(unit=98,file='balan’,status="unknown’)
open(unit=99,file=’problem’,status=’unknown’)

c-~-reading initial data and parameters

read(10,#)iprepk,irmax, istp,outmax,inmax,nrecordl,nrecord?
read(10,*)shearm,sigma0,epsa,epso,epsi,den_i,den0,iseed
read(10,*)strn0(1,1),strn0(1,2),strn0(1,3)
read(10,#)strn0(2,1),strn0(2,2),strn0(2,3)
read(10,*)strn0(3,1),strn0(3,2),strn0(3,3)
read(10,*)r1,r2,r3,ckn,ckt,cs,0rf,irel

read(10,*)nshut,1flip,nrif,itrplmax,devmni,devm2,devm3,afl,af2

read(10,*)den02,den0i,den1,den2,den3,dens,dens
read(10,#)dv0,dv1,dv2,dv3,dv4,dv5,dv6,dv7,dv8
read(10,*)i_cumu,itrialm,e_ym,pois_r,barkn,barR,grad,amda
read(10,*)conk,conb,isign

vrite(*,#)’isigm’,isigm

if(nrecordi.ne.0)then
idisti=istp/nrecordl
else
idist1=10000
end if
if(nrecord2.ne.0)then
idist2=istp/nrecord2
else
idist2=10000
end if
if(istp.le.nrecord1)idisti=1
if(istp.le.nrecord2)idist2=1
monop=1
if(r1.ne.r2.or.r2.ne.r3)monop=2

if(iprepk.le.2)then
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opsi=0.0

c8=0.0

call rinit2(3,3,strn0,0.0)

if(den0.le.0.6)shearn=0.0
end it

¢c---carrying out "irmax" realizations
do 599 ir=1,irmax
itrial=t
199 icumu=0
c---generating initial loose system for packing
it (iprepk.eq.0)then

istold=0
ev=0.0

n20=nint(real(npt)/(1.0+(xr2/r1)*+dm+(r2/r3) **dm))
n10=nint(real(n20)*((r2/r1)++dm))

n30=npt-n10-n20

write(*,*)n10,n20,n30

pl=real(ni0)/real(npt)

P2=real(n10+n20)/real(npt)
solidv=4,0%pi*(n10%ris*dm+n20+r2++dm+n30*r3++dn)/3.0

iseed=(iseed+int (100000*ran(iseed)))*2+1

ratioxz=1.0

ratioyz=1.0

strmax=shearm

delz0=2.0+r1/sqrt((ratioxz+tan(strmax) )*+2+ratioyz*+2+1.0)
delx0O=delzO*ratioxz

delyO=delzO*ratioyz
nm=1+exp(log(solidv/den_i)/dm)/delz0
101 vrite(#,*)’initial nm:’,nm
103 if(nm.gt.nl)then

vrite(*,*) ’nm>nl,not enough microcell.’, ’nm,nl=’,nm,nl
write(99,#) 'nm>nl,not enough microcell.’,’nm,nl=’,nm,nl
stop
end if
dx0=delx0*nm
dyO=delyO+nm
dz0=delz0O*nm
ncell=nms**dm
ij80=1+2.0+r3/exp(log(solidv/(ncell*den0))/dm)
if(real(ijs0).ge.real(nm)/2.0)then
nm=nm+i
go to 101
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end it

call adj3(mxnc,ijsO,nm,nndb,adjc,kxx,kyy,kzz)
call shuffle(ncell,nshuf,1flip,nrif,iseed,msho,
mshi,khlf1,khlt2)

call vec_$iinit(mappartO,mxnc,izero)

n1=0
n2=0
n3=0
kap=0
ncount=0

do 100 np=1,npt

if(monop.eq.1)then
r(np)=r2
else
write(*,*) please include r_assign subroutine’
call r_asgign(nil,n2,n3,n10,n20,n30,r1,r2,r3,
P1,p2,iseed,r(np))
end it

kap=kap+1

if(kap.gt.ncell)then
write(#,*)’ir=? ir,’ nm=’,mm,’ np=’,np,’ Xap=’,kap
nm=nm+1
go to 103

end it

ki=mshO(kap)

km=k1/(nm*nm)

it (km*nm*nm.ne.k1)km=km+1
jm=(k1-(km-1)*nm*nm) /nm

if(jmenm.ne. (k1-(km-1)*nn*nm)) jm=jm+1
im=k1-(km-1)*nm*nm-(jm-1) *nm
ancount=ncount+i

hx=(im-1)*delx0
hy=(jm-1)*dely0
hz=(km-1)*delz0

itrpl=0

itrpl=itrpl+t
x(np)=hx+ran(iseed)*delx0
y(np)=hy+ran(iseed)*dely0
z(np)=hz+ran(iseed)*delz0

do 80 j=1,nnb
kn=mappart0(adjc(k1,j))
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if(kn.eq.0)go to 80
k2=map0(kn)
xkn=x (kn)-kxx(k1,jj*dx0
ykn=zy(kn)-kyy(k1,j)*dyo
zkn=z (kn)-kzz(k1, j)*»dz0
d02=(x(np)-xkn)*+2+(y(np)-ykn)*#2+(z(np)-zkn) #+2
i2(d02.ge. (r{np)+r(kn))*(r(np)+r(kn)))go to 80
if(itrpl.1t.itrplmax)then
go to 84
else
go to 83
end if
continue
map0(np)=ki
mappart0(k1)=np

continue

79

call rinit2(npt,npt,fn0,zero)
call rinit3(npt,npt,dm,ft0,zero)

vrite(#,*) ’ncount=’,ncount

density=solidv/(dx0+dy0+dz0)

write(62,%)ir,ist,dx0,dy0,dz0,nm,ijs0
do 79 i=1,npt

Irit.(ﬁ?,*)i,r(i) ax(i) )’(i) sz(i)

continue

c---starting from a packed system to repack, to relax the stress,

c

147
149

to do simple shear etc.
else
vrite(#,#)’start from packed system’
call rinit2(npt,npt,fn0,zero)
call rinit3(npt,npt,dm,ft0,zero)

read(61,#)irt,n10,n20,n30,p1,p2,density,s0lidv,sigma
read(61,*)in,istold,sstrn(1,1),sstrn(1,2),sstrn(1,3),

sstrn(2,1),sstrn(2,2),sstm(2,3),
sstrn(3,1),sstrn(3,2),8strm(3,3),ev,delev_last,iside0

do 149 i=1,npt

read(61,#)it,ntem
if(ntem.eq.0)go to 149
do 147 j=1,ntem
read(61,*)jla,fn0(i, jla),£t0(i, jla,1),
££0(1, jla,2) ,£t0(i, jla,3)
continue

continue
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177
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read(62,s)irt,istt,dx0,dy0,dz0,nnt,ijsot
do 176 i=1,npt

read(682,)it,r(i),x(i),y(1),z(i)
continue

if(iprepk.eq.1)then
densp=density
delden=(den0O-densp)/10.0
nden=1

end if

ratioxz=dx0/dz0

ratioyz=dy0/dz0

it(iprepk.eq.3)then
strmax=max{abs(strn0(1,2)),abs(strn0(1,3)),abs(strn0(2,3)),

abs(strn0(2,1)),abs(strn0(3,1)),abs(strn0(3,2)))*(istold+istp)

else

strmax=0.4
end if
delz0=2.0*r1/sqrt((ratioxz+tan(strmax))++2+ratioyz++2+1.0)
nm=dz0/delz0+1

if(nm.gt.nl)then
write(*,*) nm>nl,not enough microcell.’,’nm,nl=’,nm,nl
vrite(99,#*) ‘nm>nl,not enough microcell.’,’nm,nl=’,nm,nl
stop

end it

vrite(*,»)’computed nm’,nm,’ nl’,nl
stop

nm=nl
delz0=dz0/nm
delx0=delz0#*ratioxz
delyO=delz0*ratioyz
ncell=nm+*dm
ijs0=1+2.0%r3/exp(log(solidv/(ncell*den0))/dm)
if(real(ijs0).ge.real(nm)/2.0)then
nm=nm+i
go to 177
end if
vrite(*,#)’nm=’ ,nm,’, ijs0=’,ijs0,’, ncell=’,ncell

call adj3(mxnc,ijsO,nm,nnb,adjc, kxx,kyy,kzz)
call mapping(npt,nm,mxnc,sstrn,delx0,dely0,delz0,

X,y¥,Z,map0,mappart0,iouts)
end if

kflag=0
write(98,*)ir
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call rinit2(3,3,sstxn,0.0)
call rinit2(3,3,psstrn,0.0)

ilarg=1
ismal=0
c iz(iprepk.eq.2)istp=1

¢---a number of cyclic shearings for packing or steps for simple shear
do 598 ist=istold+1,istold+istp
icheck=0

iter3=0
lowstrn=0
highstrn=0
nostop=0

692 if(iter3.ne.3.and.nostop.eq.0)then
icheck=icheck+1
call rmatx_copy(3,3,strn0,strn)
else
if(lowstrn.1lt.2)then
icheck=icheck+1
do 690 i=1,3
do 690 j=1,3
strn(i,j)=stm(i,j)/2.0
680 continue
lowstrn=lowstrn+1
iter3=0
if(nostop.eq.1)nostop=0

else
if(highstrn.eq.0)then
icheck=icheck+1
do 691 i=1,3
do 691 j=1,3
stra(i, j)=strn0(i,j)*2.0
€91 continue
else
icheck=icheck+i
do 693 i=1,3
do 693 j=1,3
strn(i,j)=strm(i,j)*2.0
693 continue
end if

if(nostop.eq.1)nostop=0
iter3=0

highstrn=highstrn+i
if(highstrn.gt.2)then
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vrite(99,¢) ’sorry, I cannot find a satisfactory delev’
write(99,%) 'to balance the stress, stop! highstrn’
stop

end if

end it
end if

it(iprepk.le.1)then
if(den0.le.0.6.0r.(den0.gt.0.6.and.density.gt .den0-0.002
.and.abs(psstrn(3,1)+psstrn(1,2)).1t.1.0e-8))then
strn(3,1)=0.0
strn(1,2)=0.0
else

ismal=ismal+l
if(mod(ilarg,2).ne.0)then

it(ismal.eq.1)strn(3,1)=shearm
it(ismal.eq.2)stm(3,1)=~shearn
if(ismal.eq.3)strn(3,1)=~shearm
if(ismal.eq.4)strn(3,1)=shearn
strn(1,2)=0.0
sstrn(1,2)=0.0

else
if(ismal.eq.1)strm(1,2)=shearm
if(ismal.eq.2)strm(1,2)=~shearn
if(ismal.eq.3)strn(1,2)=-shearm
if(ismal.eq.4)strn(1,2)=shearm
strn(3,1)=0.0
sstrn(3,1)=0.0

end if

if(mod(ismal,4).eq.0)then
ilarg=ilarg+l
ismal=0

end if

end if
end if

if(icheck.gt.12)then
write(99,*) ’program terminated due to unconverged outloop’
write(6,*) 'program terminated due to unconverged outloop’

stop
end if
strn_c=0.0
sstrn_c=0.0
do 687 i=1,3
do 687 j=1,3

sstrn(i,j)=psstrn(i,j)+stm(i,j)




it (abs(strn(i,j)).gt.abs(strn_c))strn_c=strn(i,j)
if(abs(sstrn(i,j)).gt.abs(sstrn_c))sstrn_c=sstrn(i,j)

687 continue
c write(99,#)ir,ist,iterout,strn_c
iterout=0
c write(50,*)’ir,ist,iterout,stest,test,error,delev,ev,flu/m,
c +dens’
write(®,*)’ir,ist,iterout,stest,test,exror,delev,ev,flu/nm,
+dens, isigm’
write(s,s)’ ?
c write(98,s)’ *

c---choosing the increment of contraction for packing

if(iprepk.le.1)then
if(iprepk.eq.0.and.ist.le.1)then
delevO=-dvo0
else if(density.ge.den0)then
delev0=0.0
icumu=icumu+i
else
if(density.1t.den02)then
delevO=-dvi
else if(density.lt.denO1.and.density.ge.den02)then
delev0=-dv2
slse if(density.lt.deni.and.density.ge.den01)then
delevO=-dv3
else if(density.lt.den2.and.density.ge.deni)then
delev0=-dv4
else if(density.lt.den3.and.density.ge.den2)then
delev0=-dvb
else if(density.lt.den4.and.density.ge.den3)then
delevO=-dvé
else if(density.lt.den5.and.density.ge.den4)then
delevO=-dv7
else
delev0=-dv8
end if
end if
delev=delev0

c---do packing, force balancing, and computing stress

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,deno,

iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,

¥X,Vy,¥Z,VXm,vynm,vzn,wvxt,vyt,vzt,s0lidv,volume,density,
fn0,fni,ft0,ft1,dft,d1,sfx,sfy, sfz,smx,sny,smz, itrial,

+ 4+ o+t

inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz, , mxnc,nndb,
r,x,y,z,xm,ym,2m,xt,yt,zt,ux,uy,uz, uxm, uyn, uzm, uxt,,uyt,uzt,
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+ a,b,ak,bk,adjc, kxx, kyy,kzz,nx,ny,nz,map0,map,nbon,kslp,kact,
+ xn,dxn,res,orf, numr,mappart0,mappart,
+ 8,test,sigma,stest, error,errormin,delevain, kflag,amda)
go to 604
end it

c---algorithm to achieve the desirad isotropic stress

0O 0000060 0 00

592

iter2=1
iter3=0
inega=1
ivent=0

devi=zero
delev=devi
it (iprepk.eq.2)then
iterout=iterout+1
test=sigma-sigmal
f_devi=test
if(test.1t.0.0)then
stest=-1
else
stest=1
end if
error=test/sigma0
else
iteroutsiterout+dl

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,den0,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz, mxnc,nnb,
r,x,y,z,xm,ym,zmn,xt,yt,zt,ux,uy, uz, uxm,uym, uzm, uxt, ,uyt,uzt,
wX,Wy,wZ,WXm,vym,wzZm,wxt,wvyt,wzt,solidv,volume,density,
£n0,fn1,ft0,ft1,dft ,d1,sfx,sty,sfz,smx,smy,smz,itrial,
a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,map0,map,nbon,kslp,kact,
xn,dxn,res,orf ,numr,mappart0,mappart,
8,test,sigma,stest,error,errormin,delevmin, kflag,anda)
if(abs(error).1t.epso)go to 604

T A

f_devi=test
end if
iside=stest
testO=test
error0=error

igo942=0
if(iside*inega.eq.-1)then
if(ist.le.1.0x.ivent.eq.1)then
devm_1=devmi
else if(iter3.ge.1)then
devm_i=delevmin~0.0005*iter3
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else
i2(iside0.eq.0)then
devm_isdeval
else if(iside0.eq.-1)then
devm_1zafisdeloev_last
else
devm_1=-afl*delev_last*4.0
end if
end if
delev=devm_1
iterout=iterout+1

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,den0,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,del20,delx,dely,delz, , mxnc,nndb,
r,x,y,Z,xm,ym,2m,xt,yt,zt,ux,uy,uz, uxn,uyn, uzn, uxt ,uyt,uzt,
vX,wy,¥w2,VXm,vym,wzn,vxt,vyt,wzt,solidv,volume,density,
fn0,fn1,7t0,ft1,d2¢t,d1,s8fx,81y,sfZ,smx,sny,smz,itrial,
a,b,ak,bk,adjc,kxx,kyy,k2z,nx,ny,nz, ,nap0,map,nbon, kslp,kact,
xn,dxn,res,orf,numr,mappart0,mappart,

s,test,sigma,stest, exTor,errormin,delevmin,kflag,anda)

if(abs(error).1t.epso)go to 604

fevmni=test
if(ist.le.1.or.ivent.eq.1)then
devm_2=devm2
ivent=0
else if(iter3.ge.1)then
devm_2=delevmin-0.0001*iter3
else
it (iside0.eq.0)then
devm_2=devm2
else if(iside0.eq.-1)then
devm_2=af2*delev_last
else
devm_2=-af2*delev_last*4.0
end if
end if
delev=devm_2
iterout=iterout+i

call delev_stress(dm,monop,npt,idim,nm, iprepk,ir,ist,den0,
iterout,inner,iter2,iter3,idist1,zexo,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz,mxnc,nnb,
r,x,¥,Z,Xxm,ym,2n,xt,yt,zt,ux,uy, uz, uxm,uym, uzm, uxt ,uyt,uzt,
wX,wy,V¥Z,wXm,vym,wZR,vxt,wyt,vzt,s0lidv,volume,density,
£n0,fn1,ft0,ft1,dft,d1,sfx,sfy 812, smx,sny,smz, itrial,
a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,nap0,map,nbon, kalp,kact,
xn,dxn,res,orf ,numr ,mappart0,mappart,
8,test,sigma,stest,exrror,errormin,delevmin,kflag,amda)
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if(abs(exror).1t.epso)go to 604

fevm2=test
go to 781
else
942 i7(((iside0.le.0.0r . error0.1t.1.0).and.iter3.eq.0).
+ or.igo942.eq.1)then
devm_2=0.0
feva2=testO
devm_1=devm3
delev=devm_1
941 iterout=iterout+1

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,den0,
iterout,inner,iter2,iter3,idist!, zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz, mxnc,nnb,
r,x,¥,Z,Xm,yn,za,xt,yt,2zt,ux,uy, uz, uxm, uym, uzm, uxt ,uyt,uzt,
wX,wy,vzZ,uxm,vym,vzm,vxt,wyt,wzt,solidv,volume,density,
£n0,fn1,ft0,ft1,dft,d1,8fx,sly,s1z,smx,smy,smz,itrial,
a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,nap0,map,nbon,kslp, kact,
xn,dxn,res,orf ,nunr ,mappart0,mappart,
8,test,sigma,stest,error,errormin,delevmnin, kflag,amda)
if(abs(error).1lt.epso)go to 604

+ 4+

fevmi=test

it (fevmi.gt.fevm2)then
go to 791

else
devm_1=10.0*devm_1

delev=devm_1

go to 941

end if

else

if(iter3.eq.0)then
devm_1=delev_last/afi

else
devm_i=delevmin/(afi*iter3)

end if

delev=devm_1

iterout=iterout+i

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,den0,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isign,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,del20,delx,dely,delz,nxnc,nndb,
r,x,y,2,xm,yn,zm,xt,yt,zt,ux,uy,uz, uxm, uym, uzm, uxt ,uyt, ,uzt,
wX,Wy,VZ,VXm,vym,vzn,vxt,wyt,vzt,solidv,volume,density,
£n0,fnl,£t0,ft1,dft,d1,sfx,sfy sz, smx,sny,smz,itrial,
a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,nap0,nap,nbon, kslp, kact,
xn,dxn,res,orf ,numr ,mappart0,mappart,

+
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+ s8,test,sigma,stest,error,errornin,delevain, kflag,anda)
if(abs(error).1t.epso)go to 604

fevai=test

i2(iter3.eq.0)then
devm_2zdelev_last/af2

else
devm_2=delevmin/(af2siter3)

end if

delev=devam_2

iterout=iterout+l

call delov_strols(dn.-onop.npt.idil,nn,iprepk.ir,ist.deno.
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
iimax,epsi,epso,epsa,irel ,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz,nxnc,nndb,
r,x,¥,Z,Xm,yn,ZR,xt,yt,zt,ux,ny,uz, uxm,uyn, uza, uxt ,uyt,uzt,
wX,Vy,VZ,VXR,VyR,¥ZR,¥xt ,vyt,vzt,s0lidv,volune,density,
fn0,fn1,£t0,ft1,dft,d1,sfx,sty, sfz,smx,sny,smz,itrial,
a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,nap0,map,nbon, kslp, kact,
xn,dxn,res,orf,numr,mappart0,mappart,
s,test,sigma,stest,error,exrornin,delevmin,kflag,amda)
if(abs(error).1t.epso)go to 604

+ At E

fevm2stest

if(fevmi.gt.fevm2.and.fevmi.gt.0.0)then
go to 791
else
if(test0.gt.fevm2)then
feval=test0O
devm_1=0.0
go to 791
else if(test0.gt.fevmi)then
fenm2=1tevmi
devm_2=devm_1
fevmi=test0
devm_1=0.0
go to 781
else
igo942=1
go to 942
end if
end if

end if
end if

791 if(fevmisfevm2.1t.0.0)then
if(fevm1.gt.0.0)then
devl=dewvm_2




devh=devm_1
1_devl=fevm2
f_devh=fevmi
else
devl=devm_1
devh=zdevm_2
f_devlz=fevml
1_devh=fevm2
end if
go to 940
end if
slpk=(fevni-fevm2)/(devm_i-devm_2)
if(abs(slpk).1t.0.02)then
it(iside*inega.eq.-1)then
devm_1i=devm_1-0.002
delev=devm_1

iterout=iterout+i
if(iter2.eq.1.and.iterout.gt.30)then
nostop=1
go to 692
end if

call delev_stress(dm,monop,npt,idim,nm,iprepk, ir,ist,deno,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigmal,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz ,mxnc,nnd,
r,x,¥,Z,Xm,yn,zm,xt,yt,zt,ux,uy,uz, uxm,uym, uzm, uxt, ,uyt, ,uzt,
¥X,Vy,¥Z,wXm,Vya,vzZm,vxt,vyt,vzt,s0lidv,volume,density,
tn0,fn1,1t0,ft1,dft,d1,sx,sfy,s1Z,smx,smy,smz,itrial,
a,b,ak,bk,adjc,kxx,kyy, kzz,nx,ny,nz,map0,nap,nbon,kslp,kact,
xn,dxn,res,orf,numr,mappart0,mappart,
8,test,sigma,stest,error,errormin,delevmin, kflag,amda)
if (abs(erxror).lt.epso)go to 604

O I T

fevmi=test
go to 791
else
if(devm_1.le.0.0)then
devm_1=2.0*devm_1

else
devm_1=0.5%devm_1
end if
delev=devm_1
iterout=iterout+1

if(iter2.eq.1.and. iterout.gt.30)then
nostop=1
go to 692
end if

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,deno,
+ iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
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inmax,epsi,epso,epsa,irel,signa0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz,mxnc,nnd,
r,x,y,Z,xm,ym,za,xt,yt,zt,ux,uy,uz, uxn,uyn, uzm, uxt ,uyt,,uvzt,
vx,¥y,VZ,VIR,¥yR,VZR,vxt,vyt, vzt ,s0lidv,volume,density,
fn0,fn1,21t0,1t1,41t,d1,8fx,s1y,s1zZ,smx,sny,smz,itrial,
a,b,ak,bk,adjc kxx,kyy,kzz,nx,ny,nz,nap0,map,nbon,kslp,kact,
xn,dxn,res,orf ,numr,mappart0,mappart,
s,test,sigma,stest,exyor,errorain,delevain,xflag,anda)

it (abs(error).1lt.epso)go to 604

fewmi=test
go to 791
end if

else

ilow=0
ihigh=0
devm_3=devm_1-fevm1/slpk
if(iside*inega.eq.-1)then
if(devm_3.1t.0.0)then
delev=devm_3
else
delev=-0.00005
end it
devm_3=delev
else
it (devm_3.gt.0.001)devm_3=0.0005
delev=devm_3
end if
iterout=iterout+1

if(iter2.eq.1.and.iterout.gt.30)then
nostop=1
go to 692
end if

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,den0,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz,mxnc,nnd,
r,x,y,2,xm,ym,2zm,xt,yt,zt,ux,uy, uz, uxmn, uym, uzm, uxt ,uyt ,uzt,
vx,vy,vZ,vxm,wyn,vzn,vxt,vyt,vzt,solidv,volume,density,
fn0,fn1,£t0,2t1,d2¢,d1,s1x,sfy,sfZ,snx, sy, smz,itrial,
a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,nap0,nap,nbon, kslp,kact,
xn,dxn,res,orf,numr,nappart0,mappart,
s,test,sigma,stest,error,errormin,delevmin, ktlag,anda)
if(abs(error).1t.epso)go to 604

it(test.le.0.0)then
ilow=1
devl=delev
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12 _devlistest

slpk=(feva2-test)/(devm_2-delev)

govm_3zdelev

geval=test

if(abs(slpk).1t.0.02)then
slpk=(fevai-test)/(devm_1-delev)

end it

delevzdelev-test/slpk

iterout=iterout+l

if(iter2.eq.1.and.iterout.gt.30)then
nostop=1
go to 6982
end if

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,deno0,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz,mxnc,nndb,
r,x,Y,Z,Xm,yn,za,xt,yt,2t,ux,uy, uz, uxn,uym, uzn, uxt ,uyt,uzt,
vX,Vy,¥Z,VXRm,Vyn,vza,vxt,vyt,wzt,solidv,volume,density,
fn0,fni,1t0,ft1,dft,dl,sfx,sfy,sfz, smx,smy,snz,itrial,
a,b,ak,bk,adjc,kxx,kyy,k2z,nx,ny,nz,nap0,map,nbon,kslp,kact,
xn,dxn,res,orf,nunxr ,mapparto, paxt,
:,tolt,ligna.:test.orror.errornin,delovnin,ktlag,anda)
it (abs(error).1t.epso)go to 604
go to 929

R E R R

else
ihigh=1
devh=delev
f_devh=test
slpk=(fevm2-test)/(devm_2-delev)
gevm_3=delev
gevm3=test
delev=delev-test/slpk
iterout=iterout+1

it(iter2.eq.1.and.iterout.gt.30)then
nostop=1
go to 682
end if

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,den0,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz,nxnc,nnd,
r,x,Y,z,Xm,yn,zn,xt,yt,zt,ux,uy,uz, uxm, uym, uzm, uxt ,uyt,uzt,
vwX,Vy,¥Z,VIR,Vym,vzR,vxt,wyt,wzt,so0lidv,volume,density,
In0,fn1,1t0,ft1,dft,d1,sfx,sfy,sfz,smx,smy, smz,itrial,
a,b,ak,bk,adjc, kxx, kyy,kzz,nx,ny,nz,nap0,map,nbon,kslp,kact,
xn,dxn,res,orf ,nunr ,mappart0,nappart,

* 4+ e+




+ s,test,sigma,stest,exror,exrormin,delevain,kflag,anda)
if(abs(exxror).1t.epso)go to 604

go to 929
end it
920 if(test.le.0.0)then
ilow=1
devl=delev
f_devl=test

if(ilowsihigh.eq.1)go to 940

slpk=(gevm3-test)/(gevm_3-delev)

goevm_3=delev

gevm3=test

itz (abs(slpk).1t.0.02)then
slpk=(fevn2-test)/(devm_2-delev)

end if

delev=delev-test/slpk

iterout=iterout+i

if(iter2.eq.1.and.iterout.gt.30)then
nostop=1
go to 692
end if

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,deno,
iterout,inner,iter2,iter3,idist1,zexro,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigmao,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz, mxnc, nndb,
r,x,y,z,xm,ym,zm,xt,yt,2t,ux, vy, uz, uxm,uyn, uzm, uxt ,uyt, uzt,
wX,Vy,¥Z,VXR,Vym,VZR,vxt ,vyt, ¥zt ,s0lidv,volume ,density,
In0,fni,ft0,ft1,dft,d1,s1x,81y,s1Z,8mx,smy,smz,itrial,
a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,map0 ,map,nbon, kslp,kact,
xn,dxn,res,orf,nunr,mappart0,mappart,
s,test,sigma,stest,exror,errormin,delevmin, kflag,amda)
if(abs(error).1t.epso)go to 604

A IS

go to 929

else
ihigh=1
devh=delev
f_devh=test

if(ilows*ihigh.eq.1)go to 940

slpk=(gevm3-test)/(gevm_3-delev)

gevm_3=delev

gevm3=test

if(abs(slpk).1t.0.02)then
slpk=(fevm2-test)/(devm_2-delev)

end if

delev=delev-test/slpk

iterout=iterout+i

if(iter2.eq.1.and.iterout.gt.30)then
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nostops=1
go to 692
end if

call delev_stress(dm,monop,npt,idim,nm, iprepk,ir,ist,deno,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigmn0,isigm, fnaverage,fnav_cur,
delev,ev, sstrn,strn,delx0,dely0,delz0,delx,dely, delz,mxnc,nnbd,
r,X,¥,Z,Xm,ym,zn,xt,yt,zt,ux,uy,uz, uxm,uym, uzn, uxt ,uyt,uzt,
vX,¥vy,vZ,VIR,VyR,¥ZR,uxt vyt , vzt ,s0lidv,volume,density,
fn0,fn1,2t0,1t1,df¢t ,d1,s1x,81y,81Z,snx,sny,smz,itrial,
a,b,ak,bk,adjc,kxx, kyy, kzz,nx,ny,nz,nap0,nap,nbon,kslp,kact,
xn,dxn,res,orf,numr ,mappart0,mappart,
s,test,lignn.ltelt,error,orrornin,dolevnin,ktlag.a-da)
if(abs(error).lt.epso)go to 604
go to 929

T R R,

end it
end if

940 ddev=devh-devl
errormin=100.0
delevmin=0.0
iter2=2
do 924 iterout=1,outmax
rtflsp=devl+ddevsf_devl/(f_devl-f_devh)
if(abs(rtflsp-delevt).1t.0.0000001)then
delev=rtilsp+*1.50
else
delev=rtflsp
end if
delevt=delev

call delev_stress(dm,monop,npt,idim,nm,iprepk,ir,ist,deno,
iterout,inner,iter2,iter3,idist1,zero,val,ckn,ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,fnav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz, mxnc,nndb,
r,x,y,Z,xm,yn,2n,xt,yt,zt,ux,uy,uz,uxm,uyn, uzn, uxt ,uyt,uzt,
¥X,Vy,VZ,vXR,Vym,vZa,vxt,vyt,wzt,solidv,volume ,density,
fn0,fn1,1t0,1t1,dft d1,8fx,81y,812,smx,smy,smz,itrial,
a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,mnap0,map,nbon, kslp,kact,
xn,dxn,res,orf,numr ,mappart0,mappart,

s,test,sigma,stest, exrror,exrrormin,delevmin, kflag,anda)

if(abs(error).1lt.epso)go to 604

P ST K N

f_f=test
if(£_£.1t.0.0)then
devl=delev
f_devl=f_2
else
devh=delev




924

95

1_devh=t_¢

end if
ddev=devh-devl
continue

iter3=iter3+}
iterout=1
iter2=1
if(iter3.1t.2)then
go to 592
else if(iter3.eq.2.and.iside.gt.0)then
inegasz-1
go to 692
else if(iter3.eq.2.and.iside.1t.0)then
ivent=1
go to 592
olse if(iter3.eq.3.and.lowstrn.lt.2)then
go to 692
else if(iter3.eq.3.and.highstrn.1t.2)then
go to 692
else
write(99,%) 'sorry, I cannot find a satisfactory delev’
write(99,*) ’to balance the stress, stop! end of outloop’
stop
end it

c---updating the position, force, mapping etc. for the next step
c---computing and storing

604

call vec_$copy(xt,x,npt)

call vec_$copy(yt,y,npt)

call vec_$copy(zt,z,npt)

call vec_$icopy(map,map0,npt)

call vec_$icopy(mappart,mappart0,mxnc)
call rmatx_copy(npt,npt,fn1,fn0)

call rmatx3_copy(npt,npt,dm,ft1,1t0)

delx0O=delx
delyO=dely
delzO=delz
dx=delxO*nm
dy=delyO*nm
dz=delzO*nm

ev=ev+delev

delev_last=delev
if(delev.gt.0.0)iside0=1
if(abs(delev).1t.1.0e-10)iside0=0
if(delev.1t.0.0)iside0=-1

if(iprepk.ge.3)then
if(abs(strn_c).gt.1.0e-8)slop=delev/strn_c
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end if

call vec_$iinit(kphi,12,0)
call vec_$iinit(ktheta,24,0)

i2((iprepk.gt.1.and.ist.eq. (idist2s

(ist/idist2))).or.kflag.eq.1)then

call rinit2(npt,mxc,ctpx,zero)

call rinit2(npt,mxc,ctpy,zero)

call rinit2(npt,mxc,ctpz,zero)

call init2(npt,mxc,thkn,izero)

call init2(npt,mxc,thkt,izero)
end if

do 807 i=1,npt-1
do 608 j=i+1,npt
da1(j,1)=d1(4,j)
continue
continue

call copyhalf(npt,d1)
call rinit2(dm,dm,nij,zero)

call rinit2(npt,npt,cond,zeroc)
call vec_$init(brx,npt,zero)
call vec_$init(bry,npt,zero)
call vec_$init(brz,npt,zero)

call init2(npt,npt,mcont,0)
call rinit2(npt,npt,tfor,zero)
call rinit2(npt,npt,tft,zero)

condmax=0.,0
condmin=100.0
condmax2=0.0
condmin2=100.0
avr_1In=0.0
navr_fn=0

avr_cond2=0.0
navr_cond2=0

do 221 np=1,npt
ih(np)=0
do 222 j_kn=1,nnb

kn=mappart (adjc(map(np),j_kn))
if(kn.eq.0)go to 222

if(fn1(np,kn).ge.~epsa)go to 222

nij(1,1)=nij(1,1)+nx(np,kn)*nx(np,kn)
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nij(1,2)=nij(1,2)+nx(np,kn)*ay(np,kn)
nij(1,3)=nij(1,3)+nx(np,kn)*nz(np,kn)
nij(2,1)=0ij(2,1)+ny(np,kn)*nx(np,kn)
nij(2,2)=nij(2,2)+ny(np,kn)*ny(np,kn)
1ij(2,3)=nij(2,3)+ny(np,kn)*nz(np,kn)
nij(3,1)=nij(3,1)+nz(ap,kn)*nx(np,kn)
8ij(3,2)=nij(3,2)+nz(np,kn)*ny(np,kn)
nij(3,3)=nij(3,3)+nz(np,kn)*nz(np,kn)

mcont (np,kn)=1
tfor(np,kn)=sqrt(fni(np,kn)*+2+ft1(np,kn,1)*+2+
£t1(np,kn,2)**2+1t1(np,kn,3)**2)
if(abs(cs).gt.1.0e-5)then
t1t(np,kn)=sqrt(fti(np,kn, 1) s*2+
ft1(np,kn,2)**2+ft1(np,kn,3)**2)
end it

kx=kxx (map(np), j_kn)
xy=kyy (map(np), j_kn)
kz=kzz(map(np), j_kn)

xl=kx*nm*delx+ky*tan(sstrn(2,1))*nmsdely+
kz*tan(sstrn(3,1))*nn*delz

yl=ky*nm*dely+kx*tan(sstrn(1,2) )*nm*delx+
kz*#tan(sstrn(3,2) )+nm+delz

zl=kzsnm*delz+kxstan(sstrn(1,3))snm*delx+

kystan(sstrn(2,3))*nm*dely

xkn=xt (kn)-x1

ykn=yt(kn)-yl

zkn=zt (kn)-z1

call degree_phi(nz(np,kn),kphi)
call degree_theta(nx(ap,kn),ny(np,kn),ktheta)

it((iprepk.gt.1.and.ist.eq.(idist2#
(ist/idist2))).or.kflag.eq.1)then
ih(np)=ih(np)+1
ctpx(np, ih(np) )=(xr(kn)*xt (np)+r(np)*xkn)/d1 (np,kn)
ctpy(np, ik(np) )=(x(kn)*yt (np)+r(np)+ykn)/d1(np,kn)
ctpz(np, ih(np) )=(xr(kn) *2t (np)+r(np)*zkn)/d1(np,kn)

end it
if(iprepk.eq.3.or. (iprepk.le.2.and.kflag.eq.1))then

freal=abs(fni(np,kn)+barR+barkn)
cond(np,kn)=conb*exp(conk+log(freal))

avr_cond2=avr_cond2+cond(np,kn)
navr_cond2=navr_cond2+1

avr_fn=avr_fn+fni(np,kn)




navr_fn=navr_fn+1
c if(kx.ne.0.or.ky.ne.0)cond{np,kn)=0.0

if(cond(np,kn).gt.condmax)condmax=cond(np,kn)
if(cond(np,kn).1lt.condmin.and.cond(np,kn).gt.1.0e~20)
+ condmin=cond/np,kn)
brx(np)=brx(np)-cond(np,kn)*(xkn-x(np) ) *barR+grad
bry(np)=bry(np)-cond(np,kn)*(ykn-y(np))*barR*grad
brz(np)=brz(np)-cond(np,kn)*(zkn-z(np) ) *barRegrad

end if
222 continue
221 continue
if(iprepk.eq.3.or.(iprepk.le.2.and.ktlag.eq.1))then
do 224 i=1,npt
ptr=0.0
do 223 j=1,npt
ptm=ptm+cond(i, j)
223 continue
cond(i,i)=-ptm
224 continue
call conduct(npt,mxnc,nnb,dx,dy,dz,sstrn,x,y,z,r,

+ nx,ny,nz,cond,brx,bry,brz,cur,voltf,c_eff,

+ cxn,cres,cdxn,map,mappart,adjc,kxx,kyy,kzz,grad,barR)
write(30,*)ist,sstrn_c,condmax,condmin
write(30,%)? ?,c_eff(1,1),c_ef£(1,2),c_ef£(1,3)
write(30,%)’ ’,c_eff(2,1),c_ef£(2,2),c_of£(2,3)
write(30,*)? ',c_eff(3,1),c_ef£(3,2),c_ef£(3,3)
write(30,*)?*

Cmm———= computing conductivity by mean field theory

avr_fn=avr_fn/real(navr_fn)

avr_freal=abs(avr_fnsbarR+barkn)
avr_cond=conb*exp(conk*log(avr_freal))

cmc=2, 0#r2sr2+avr_cond/(dx*dy+dz+barR)

avr_cond2=avr_cond2/real (navr_cond2)
cmc2=2.0*r2+r2s%avr_cond2/(dx+dy*dz+barR)
write(30,*)’ ’,avr_fn,avr_cond,avr_cond2,cmc2#*nij(3,3)
c write(30,*)* ’,avr_fn,avr_freal,avr_cond,cmc
write(30,#)* ’,cmc*nij(1,1),cmc*nij(1,2),cmc*nij(1,3)
write(30,*)’ ’,cmc*nij(2,1),cmc*nij(2,2),cme*nij(2,3)




write(30,%)’ !, cmcenij(3,1),cmcenij(3,2),cmc*nij(3,3)
wvrite(30,%)’

end if

324
323

do 323 i=i,dm
do 324 j=1,dm
nij(i,j)=nij(i,j)/(2.0+nbon)
continue
continue

268
258

359
358

fmax=0.0
fmin=10.0
fnmax=0.0
fnmin=10.0
ftmax=0.0
ftmin=10.0

do 258 i=1,npt-1
do 259 j=i+1,npt

if(fn1(i,j).gt.~epsa)go to 259
it(tfor(i,j).gt.fmax)then
tmax=tfor(i,j)
imax=1
jmax=j
end if
it(tfor(i,j).1t.fmin)then
fmin=tfor(i,j)
imin=i
jmin=j
end if

if(abs(fn0(i,j)).gt.fnmax)fnmax=abs(n0(i,j))
it (abs(fn0(i,j)).1t.fnmin)famin=abs(#n0(i,j))
ifg(tft(d,j).gt. ftmax) ftmax=tLt(i,j)
it(t2t(i,j).1¢. ftmin) ftmin=tLt(1i,])
continue
continue

if(ir.eq.1.or.kflag.eq.1)then
write(70,*)ir,ist,nbon,fnmax,fnmin,-avr_1In
do 358 i=1,npt-1
do 359 j=i+1,npt
if(#n1(i,j).gt.-epsa)go to 359
write(70,*)fn1(i,j)
continue
continue
end if
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c 267
c 265

854

it(ist.eq.idist1#(ist/idist1).or.kflag.eq.1)then

write(54,*)ir,ist

do 855 k=1,12
fraction=kphi(k)/(2.0%nbon+1.0e-10)
vrite(54,863)k*15.0,fraction
format(2x,i6,£10.3)

continue

write(66,*)ir,ist

do 856 k=1,24
fraction=ktheta(k)/(2.0*nbon+1.0e-10)
write(56,863)k*15.0,fraction

continue

write(51,*)ir,ist
do 589 i=1,npt
write(51,57)uxt(i),uyt(i),uzt(i)
write(51,57)wxt(i),wyt(i),vzt(i)
format(2x,3115.6)
continue

if(fmin.ge.epsa.and.fmin.ne.10.0)then
write(92,#*)ist,’ fn, ft’

write(92,%)’ Smallest force:’,imin, jmin,’fmin= ’,fmin
vrite(92,*)’ Largest force:’,imax,jmax,’fmax=
write(92,*)’ Smallest normal force:’,’ fnmin=

write(92,*)’ Largest normal force:?’,’

do 265 i=1,npt
write(92,#)i
do 267 j=1,npt
if(fn0(i,j).1t.-epsa)then

fnmax=

? ,fmax
? ,fomin
? . fnmax

write(92,266)j,fn0(i,j),2t0(i,j,1),£t0(i,j,2),1t0(i,j,3)

format(5x,i4,4(£15.11,1x))
end if
continue
continue

end if
end if

vrite(55,854)ir,ist,sstrn_c,nbon, kslp,kact
format(2x,2i5,112.6,3i5)

write(68,s)-sstrn_c,-fnaverage
write(69,*)-sstrn_c,-frav_cur

npart=0
do 189 k=1,npt
if(map(k).ge.1.and.map(k).le.ncell)then
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npart=npart+1
end if
189 continue

vrite(53,851)ir,ist npart,sstrn_c,delev,
+ density,slop,ev
851 format(1x,3i5,5£10.5)
write(63,852)s(1,1),s(1,2),s(1,3)
write(53,852)s8(2,1),8(2,2),8(2,3)
write(53,852)s8(3,1),8(3,2).,8(3,3)
write(53,s)’

write(53,852)nij(1,1),nij(1,2),nij(1,3)

write(53,862)nij(2,1),0ij(2,2),0ij(2,3)

write(53,852)nij(3,1),0rij(3,2),nij(3,3)
852 format(5x,3(1x,e15.7))

it((iprepk.gt.1.and.ist.eq. (idist2+
+ (ist/idist2))).or.kflag.eq.1)then

write(80,*)ir,ist,delx*nm,dely*nm,delz*nm,
+ sstrn(1,2),sstrn(1,3),sstrn(2,3)
+ sstrn(2,1),sstmm(3,1),sstrn(3,2)
do 489 i=1,npt
write(80,339)i,r(i).x(i),y(i),z(i)
339 format(i5,£6.2,3(1x,£10.5))
489 continue
vrite(80,*)kflag

fndif=(fnmax-fnmin)/4.0
ftdif=(ftmax-ftmin)/4.0

call init2(npt,mxc,thkn,izero)
call init2(npt,mxc,thkt,izero)

do 702 i=1,npt
jg=0
do 701 j=1,npt

if(#n0(i,j) .gt.~epsa)go to 701
jg=jq+i
if(abs(fndif).le.epsa)then
thkn(i, jq)=1
else
thkn(i,jq)=int((abs(fn0(i,j))-fomin)/fndit)+1
end if

it(abs(t2t(i,j)).gt.epsa.and.
+ abs(ftdit).le.epsa)then
thkt(i,jq)=1
else if(abs(tft(i,j)).gt.epsa.and.
+ abs(ftdif).gt.epsa)then
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thkt(i,jq)=int((abs(t2t(i,j))-ftmin)/2tdif)+1
olse
thkt (i, jq)=0
end if

continue
continue

write(81,#)ist

do 86 i=1,npt
vrite(81,87)i,ih{i)
format(2x,2i5)

continue

write(82,%)ist
write(83,#)ist,fnmax,fnmin,ftmax,ftmin
do 97 i=1,npt

write(82,88) (ctpx(i,j),j=1,10)
vrite(82,88)(ctpy(i,j),j=1,10)
write(82,88)(ctpz(i,jj,j=1,10)
write(83,89)(thkn(i,j), j=1,10)
write(83,89)(thkt(i,j),j=1,10)
format(10(1x,16.3))
format(10(1x,i2))
continue
end if

if(iprepk.gt.2)then
cloge(71,status="delete’)
close(72,status="delete’)
open(unit=71,file=’predatl’,status=’unknown’)
open(unit=72,file=’coordl’,status=’unknown’)
iwr=1

end if
do 98 i=1,3
do 98 j=1,3

psstrn(i, j)=sstrn(i,j)

starin(i, j)=sstrn(i,j)

if(iprepk.le.2)starin(i,j)=0.0
continue

istol=ist
evv=ev
delev_la=delev_last
if(iprepk.le.2)then
istol=0
evv=0.0
delev_la=0.0
end if
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196

598

it(iprepk.eq.1.and.abs(sstrn(3,1)+sstrn(1,2)).1t.1.0e-8.and.
density.ge. (densp+ndensdelden).and.density.1t.
(densp+(nden+1)*delden))then
nden=nden+1
ivr=1

end it

if(kflag.eq.1.0r.(ist.eq.istold+istp).or.ivr.eq.1.0r.
+ (icumu.ge.i_cumu.and.iprepk.eq.1))then
ivr=0
write(71,#)ir,n10,n20,n30,p1,p2,dy,s0lidv,signa
write(71,s)ist,istol,starin(1,1),starin(1,2),starin(1,3),
+ starin(2,1),starin(2,2),starin(2,3),
+ starin(3,1),starin(3,2),starin(3,3),evv,delev_la,iside0

do 192 i=1,npt
ntem=0
do 191 k=1,npt
ntem=mcont (i, k)+ntem
continue

write(71,*)i,ntem
do 193 j=i,npt
i2(#n0(i,j).1t.0.0)then
write(71,#)j,2n0(i,j),2t0(i,j,1),£t0(i,j,2),2¢0(i,j,3)
end if
continue
continue

vrite(72,*)ir,ist,dx,dy,dz,nm,ijs0
do 196 i=1,npt
write(72,+)i,r(i),x(i),y(i),2(i)
continue
end if

if(kflag.eq.1)go to 699
if(icumu.ge.i_cumu.and.iprepk.eq.0)then
if(itrial.ge.itrialm)then
vrite(99,*) ’maximum number of trials to pack’
write(99,*)’to desired density is reached, stop!’
stop
else
itrial=itrial+l
go to 199
end if
end if
if(icumu.ge.i_cumu.and.iprepk.eq.1)go to 599
continue

write(68,+) %’
write(69,*) %’
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c it(iprepk.eq.2)then
c write(s,s)’ir=? ir,’, density=’ density
[ end it

B99 contir .e

stop
end

(4

¢-~-subroutine to do packing, and force balancing

subroutine delev_stress{dm,monop,npt,idim,nm,iprepk,ir,ist,den0,
iterout,inner,iter2,iter3,idist1,zero,val,ckn, ckt,cs,
inmax,epsi,epso,epsa,irel,sigma0,isigm,fnaverage,frav_cur,
delev,ev,sstrn,strn,delx0,dely0,delz0,delx,dely,delz,nxnc,nnb,
r,x,y,Z,Xmn,yn,zn,xt,yt,zt,ux,uy,uz, uxm, uyn, uzm, uxt ,uyt,uzt,
vX,Wy,vZ,VXR,VyR,vze,uxt,vyt,vzt,solidv,volume,density,
fn0,fn1,£t0,1t1,d1t,d1,sfx,sfy,s1z,snx,sny,snz,itrial,
a,b,ak,bk,adjc, kxx, kyy,kzz,nx,ny,nz,nap0,map,nbon, kslp,kact,
xn,dxn,res,orf ,numr ,mappart0,mappart,
s,test,sigma,stest,exror,errornin,delevain,kflag,anda)

+ 4+ 4+ P

implicit real (a-~h,o-z)
implicit integer (i-n)

integer dm

real x(npt),y(npt),z(npt),r(npt)

real xm(npt),ym(npt),zm(npt),xt(npt),yt{npt),zt(npt)

real ux(npt) ,uy(anpt),uz(npt),uxm(npt) ,uym(npt),uzm(npt)
real wx(npt),wy(npt),wz(npt),wvxm(npt),wym(npt),vzm(npt)
real uxt(npt),uyt(npt),uzt(npt),wxt(npt),wyt(npt),wzt(npt)
real a(idim,idim),b(idim),ak(6,6),bk(6,6),xn(idim)

real fnO(npt,npt),fni(npt,npt)
real ftO(npt,npt,dm),fti(npt,npt,dm),dft(dm)
real sfx(npt),sfy(npt),sfz(npt),smx(npt),sny(npt),snz(npt)
real mx0,my0,mz0,d1(npt,npt),dxn(idim)
real nx(npt,npt),ny(npt,npt),nz(npt,npt),nxx,nyy,nzz
real res(idim),s(dm,dn),sstrn(3,3),strn(3,3)
c real 7 ::(idim),s(dm,dm),sstrn(6),stxn(6)

integer kxx(mxnc,nnb),kyy(mxnc,nnb),kzz(mxnc,nnb)
integer adjc(mxnc:,1.~%),map(npt),mapO(npt),stest
integer mappart(mxnc).mappartO(mxnc)

ncell=nm**dnm
cknt=ckn-ckt

c vrite(*,*) ’step=’,ist,’ out=’,iterout,’ iter2=’,iter2,




105

c +! iter3s’,itex3

c write(6,*)’ inner, bx, by, bz, sumb, ratb, nb, nbs, stress’
c if(ist.eq.idist1s(ist/idist1))then

c write(49,*) 'steps’, ist,’ outs’, iterout,’ iter2=’,iter2,
c + ? iter3s=’,itexr3

< write(49,%)? inner, bx, by, bz, sumb, ratb, nb,

c + nbs, stress’

c end it

¢---move particles according to mean displacement

factorx=strn(1,1)
factory=strn(2,2)
factorz=strn(3,3)

factor=delev/dm

do 714 i=1,npt

uxm(i)=(factorx+factor)*x(i)+strm(2,1)+y(i)+stxn(3,1)*z(i)
uym(i)=(factory+factor)*y(i)+stm(1,2)*x(i)+strn(3,2)*»z(i)
uzm(i)=(factorz+factor)*z(i)+strm(1,3)*x(i)+stm(2,3)¢y(i)
wxn(i)=strn(2,3)-strn(3,2)

vyr(i)=strn(3,1)-strn(1,3)

wzm(i)=strn(1,2)-strn(2,1)

m(i)=x(i)+um(i)

yu(i)=y(i)+uym(i)

zm(i)=z(i)+uzm(i)

ux(i)=0.0

uy(i)=0.0

uz(i)=0.0

wx(i)=0.0

wy(i)=0.0

wz(i)=0.0

714 continue

delx=delx0*(1.0+factorx+factor)
dely=delyO*(1.0+factory+factor)
delz=delz0*(1.0+factorz+factor)
density=solidv/(ncellsdelx+*dely*delz)

it(iprepk.le.1.and.density.1t.0.5)th 1
inmaxo=inmax/10
else
inmaxo=inmax
end if
c--—inner loop to balance the force

ivay=i

inner=0




333

334

+

innersinner+i

call vec_8$add_vector(xm,ux,npt,xt)
call vec_$add_vector(ym,uy,npt,yt)
call vec_$add_vector(zm,uz,npt,zt)

call vec_8$add_vector(uxm,ux,npt,uxt)
call vec_$add_vector(uym,uy,npt,uyt)
call vec_8$add_vector(uzm,uz,npt,uxt)

call vec_$add_vector(wim,vx,npt,wxt)
call vec_$add_vector(vym,vy,npt,wyt)
call vec_$add_vector(wzm,vz,npt,vzt)

if(inner.eq.1)then
call vec_$icopy(mapO,map,npt)
call vec_$icopy(mappart0,mappart,mxnc)
else
call mapping(npt,nm,mxnc,sstrn,delx,dely,delz,
xt,yt,zt ,map,mappart,iouts)
if(iouts.ge.1)then
write(99,%) particles f1ly out of the system!!’
write(99,#)ir,ist,iterout,inner,’ iouts=’,iouts
vrite(99,*)ist,delx*nm,delysnm,delzenn,
sstrn(1,1),sstxn(1,2),sstxn(1,3),
sstrn(2,1),sstrn(2,2),sstrn(2,3),
sstrn(3,1),sstrn(3,2),sstrm(3,3)
do 334 i=1,npt
write(99,#)i,r(i),xt(i),yt(i),zt(i)
continue
end if
end if

abfx=0.0
abfy=0.0
abfz=0.0
abmx=0.0
abmy=0.0
abmz=0.0
kslp=0

kact=0

call rinit2(npt,npt,fni,zero)
call rinit3(apt,npt,dm,ft1,zero)
call rinit2(npt,npt,di,val)
call vec_$init(sfx,npt,zero)
call vec_$init(sfy,npt,zero)
call vec_$init(sfz,npt,zeroc)
call vec_$init(smx,npt,zero)
call vec_$init(smy,npt,zero)
call vec_$init(smz,npt,zero)
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if(inner.le.inmaxo)then
call rinit2(idim,idim,a,zero)
call vec_$init(b,idim,zeroc)
end if

nbon=0
if(ivay.eq.1)fnaverage=0.0
fnav_cur=0.0
c---computing grand stiffness and unbalanced force vector
c---evaluating contact forces between particle

do 21 np=1,npt
knp=6+(np-1)
do 22 j_kn=i,nnb

kn=mappart(adjc(map(np),j_kn))
if(kn.eq.0)go to 22
if(d1(np,kn).1t.100.0.0r.d1(kn,np) .1t.100.0)go to 22

kx=kxx (map(np), j_kn)
ky=kyy(map(np), j._kn)
kz=kzz(nap(np), j_kn)

xl=kx+nm+delx+kystan(sstrn(2,1))+*nnedely+
kz*tan(sstrn(3,1))muedelz

yl=kysnm+dely+kx*tan(sstrn(1,2))*nm*delx+
+ kzetan(sstrn(3,2))snmsdelz

zl=kz*nusdelz+kx*tan(sstrn(1,3) )*nmedelx+

+ kystan(sstin(2,3))*nn*dely

xkn=xt (kn)-x1

ykn=yt{(kn)-yl

zkn=zt (kn)-zl

+

d12=(xkn-xt (up) ) *+2+(ykn-yt(np) )s*2+

(zkn-zt(np))*»2

if(a12.gt. (r(np)+r(kn)+0.001)*(r(np)+r(kn)+0.001))go to 22
di(np,kn)=sqrt(d12)

+

ovlap=di(np,kn)-r(np)-r(kn)
if(iwvay.eq.2)then

ckn=exp(andaslog(abs(ovlap/Inaverage)))
ckt=0.8+ckn
end if

fn=ckn*ovlap

if(fn.gt.-epsa)then
go to 22

end if

Zni(np,kn)=tn
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it(ivay.eq.1)fnaverage=fnaverage+fn
fnav_cur=fnav_cur+fn

nx(np,kn)=(xkn-xt(np))/d1(np,kn)
ny(ap,kn)=(ykn-yt(np))/d1(np,kn)
nz(np,kn)=(zkn-zt(np))/d1(np,kn)
nxx=nx(np,kn)
nyy=ny(np,kn)
nzz=nz(np,kn)

rax=r(np)*nxx

ray=r (np)*nyy

raz=xr(np)*nzz

uxnp=uxt(np)
uynp=uyt(np)
uznp=uzt(np)
wxnp=x (np) *wxt (np)
wynp=x (np) swyt (np)
vznp=r (np)swzt (ap)

uxkn=uxt(kn)-(factorx+factor)*xl-strn(2,1)*yl-stxn(3,1)zl
uykn=uyt(kn)-(factory+factor)*yl-strn(1,2)*xl-strn(3,2)*z1
uzkn=uzt(kn)-(factorz+factor)*zl-strn(1,3)*xl-strn(2,3)*yl
wxkn=x (kn) *wxt (kn)
vykn=r (kn)*wyt (kn)
wzkn=r (kn)*wzt (kn)

uxr=uxkn-uxnp
uyr=uykn-uynp
uzrsuzkn-uznp
wxrswxnp+wxkn
wyr=wynp+uykn
wzr=wznp+wzkn

nbon=nbon+1
if(abs(cs).1t.1.0e-8)then
£t1(np,kn,1)=0.0
ft1(ap,kn,2)=0.0
£t1(np,kn,3)=0.0
kslp=kslp+1
else

dft(1)=ckt*((1.-nxx*#2)+uxr-nxx+nyy*uyr-nxx*nzz+uzr
-nzZZ*Yyr+nyy*vzr)
dft(2)=ckt*(-nyy*mxx*uxr+(1.-nyy**2)*uyr-nyy*nzz+uzr
+NZZ*UXT-NXX*VZY)
dft(3)=ckt*(-nzze#nxxsuxr-nzz+nyy*uyr+(1.-nzz+*2)*uzr
~DYy*UXT+NXX*VYT)

dft(1)=dft(1)+1t0(np,kn,1)*(1.-nxx++2)-2t0(np,kn,2)*
nxx*nyy-£t0(np,kn,3)*nxx*nzz
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dft(2)=dtt(2)-2t0(np,kn, 1) snyy*nxx+£t0(np,kn,2)*#(1 .-
nyy*nyy)-£t0(ap,kn,3)*nyyenzz

d2t(3)=d2¢t(3)-2¢t0(np,kn, 1) *nzzenxx-1t0(np,kn,2)*
nzz+nyy+ft0(np,kn,3)*(1.-nzz*nzz)

ft=aqrt(dft(1)ss2+d1t(2)s+24dft (3)#+2)
txsdft(1) /1t
ty=d1t(2)/te
tz=dft(3) /1t

it(abs(1t).1t.epsa)?t=0.0

if(2t-cs+abs(fn).gt.0.0)then
ft=cs*abs(fn)
fti(np,kn,1)=ftstx
tti(ap,kn,2)=1tsty
tt1(np,kn,3)=ttstz
kslp=kslp+t

else
ft1(np,kn,1)=d2t (1)
1t1(np,kn,2)=dft(2)
1t1(ap,kn,3)=d2t(3)
kact=kact+l

end it

end if

fx=fn*nxx+£t1(np,kn,1)
fy=fn*nyy+fti(np,kn,2)
fz=fn*nzz+fti(np,kn,3)
if(abs(cs).1t.1.0e-8)then
mx0=0.0
my0=0.0
020=0.0
else
mxO=ray*fti(np,kn,3)-raz+fti(np,kn,2)
myO=raz*fti(np,kn,1)~rax*fti(np,kn,3)
mz0=rax*ft1(np,kn,2)-ray*fti(np,kn,1)
end if

sfx(np)=sfx(np)+1x
sfy(np)=sty(np)+fy
stz(np)=stz(np)+fz
snx(np)=smx(np) +mx0
smy(np)=smy(np) +my0
smz(ap)=smz (np) +mz0

sfx(kn)=sfx(kn)-fx
s1y(kn)=sfy(kn)-ty
sfz(kn)=stz(kn)-1z
sux(kn)=smx(kn) +mx0+r (kn)/r(np)
sny(kn)=smy(kn)+myO+x (kn)/r(np)
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sz (kn)=smz (kn) +mz0+x (kn)/r(np)

abfx=abfx+abs(fx)
abfy>abfy+abs(ty)
abfz=abfz+abs(fz)
abmx=abmx+abs (mx0)
abmy=abmy+abs (my0)
abmz=abmz+abs(mz0)

if(inner.eq. (inmaxo+1))go to 22

kkn=6%(kxn-1)
cknt=ckn-ckt

ak(1,1)=cknt*nxx*nxx+ckt
ak(1,2)=ckntsnxxsnyy
ak(1,3)=cknt*nxx*nzz
ak(1,4)=0.0
ak(1,5)=-cktenzz
ak(1,6)=ckt*nyy

ak(2,1)=cknt*nyy*nxx
ak(2,2)=(cknt*nyy*nyy+ckt)
ak(2,3)=cknt*nyy*nzz
ak(2,4)=ckt*nzz
akx(2,5)=0.0
ak(2,6)=-ckt#nxx

ak(3,1)=cknt*nzz*nxx
ak(3,2)=cknt*nzzsnyy
ak(3,3)=(cknt*nzz*nzz+ckt)
ak(3,4)=-ckt*nyy
ak(3,5)=ckt*nxx
ak(3,6)=0.0

ak(4,1)=ckt*(-ray*nzzsnxx+razsnyy+*nxx)
ak(4,2)=-ckt*(ray*nzzsnyy+raz+(1.0-nyy*nyy))
ak(4,3)=ckt*(ray*(1.0-nzz*nzz)+razsnyy*nzz)

ak(4,4)=-ckt*(ray*nyy+raz+nzz)
ak(4,5)=ckt*ray*nxx
ak(4,6)=ckt*raz*nxx

ak(5,1)=ckt*(raz+(1.0-nxx*nxx)+raxsnzz+nxx)
ak(5,2)=ckt*(-razsnxxsnyy+raxsnzzenyy)
ak(5,3)=-ckt*(raz*nxx*nzz+rax+*(1.0-nzz*nzz))

ak(5,4)=ckt*rax*nyy
ak(5,5)=-ckt*(razsnzz+rax*nxx)
ak(5,6)=ckt*razsnyy

ak(6,1)=-ckt*(rax*nyysnxx+ray#*(1.0-nxx#nxx))
ak(6,2)=ckt*(rax+(1.0-nyy*nyy)+ray*nxx+nyy)
ak(6,3)=ckt* (-rax*nyy*nzz+raysnxx+nzz)
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ak(6,4)=cktsrax*nzz
ak(6,5)=cktsray*nzz
ak(6,68)=~ckts(raxsnxx+raysnyy)

knp1=knp+1
knp2=knp+2
knp3=knp+3
knpA=knp+4
knp5sknp+5
knp6=knp+6
kkni=kkn+1
kkn2=kkn+2
kkn3=kkn+3
kkn4=kkn+4
kkn5=kkn+5
kkn6=kkn+6

a(knp1,knpi)=a(knpi,knpi)-ak(1,1)
a(xnp1,knp2)=a(knpi,knp2)-ak(1,2)
a(knp1,knp3)=a(knpi,knp3)-ak(1,3)
a(knp1,knp4)=a(knp1,knp4)+ak(1,4)*x(np)
a(knp1,knp5)=a(knpi, knp5)+ak(1,5)*xr(np)
a(knp1,knp6)=a(knpi,knp8) +ak(1,6)*x(np)

a(xnp2,knp1)=a(knp2,knp1)-ak(2,1)
a(knp2,knp2)=a(knp2,knp2)-ak(2,2)
a(knp2,Xnp3)=a(knp2,knp3)-ak(2,3)
a(knp2,xnp4)=a(knp2, knp4)+ak(2, 4)*xr(np)
a(knp2,knp6)=a(knp2,knpb)+ak(2,5)*x (np)
a(knp2,knp6)=a(knp2,knp6)+ak(2,6)*x (np)

a(knp3,knp1)=a(knp3,knp1)-ak(3,1)
a(knp3,knp2)=a(knp3,knp2)-ak(3,2)
a(knp3,knp3)=a(knp3,knp3)-ak(3,3)
a(knp3,knp4)=a(knp3,knp4)+ak(3,4)*r(np)
a(knp3,knpb)=a(knp3,knp5)+ak(3,5) *r (np)
a(knp3,xknp6)=a(knp3,knp8)+ak(3,6)*r(np)

a(knp4,knpi)=a(knp4,knp1)-ak(4,1)
a(knp4,knp2)=a(knp4,knp2)-ak(4,2)
a(knp4,knp3) =a(knp4,knp3)-ak(4, 3)
a(knp4,knp4)=a(knp4,knpt) +ak(4,4)+r(np)
a(knp4,knp5)=a(knp4,knp5)+ak(4,5)*r (np)
a(knp4,knp6)=a(knp4,knp6)+ak(4,8)*r (np)

a(knp6,knp1)=a(knp5,knp1)-ak(5,1)
a(knp5,knp2)=a(knp5,knp2)-ak(5,2)
a(knp5,knp3)=a(knp5,knp3)-ak(5,3)
a(knp5,knp4)=a(knp5, knp4)+ak(5,4)*r (np)
a(knp6,knp6)=a(knp5,knpt) +ak(5,5)*x (np)
a(knp6,knp6)=a(knp5,knp8) +ak(5,6)*xr (np)




a(knp®,knp1)=a(knpé, knp1)-ak(6,1)
a(knp6,knp2)=a(knp6,knp2)-ak(6,2)
a(kxnp6,knp3)=a(knp8,knp3)-ak(6,3)
a(xnp6,knp4)=a(knp6,knp4) +ak(6,4)+r (np)
a(knp6,knp5)=a(knp6,knpE) +ak(6,5) ¢r(np)
a(knp6,knp6)=a(knp6,knp8) +ak(6,6)*r (np)

a(knpi,kkn1)=ak(1,1)
a(knp1,kkn2)=ak(1,2)
a(xnp1,kkn3)=ak(1,3)
a(knp1,kkn4)=ak(1,4)*r(kn)
a(knpl,kknE)=ak(1,5)*r(kn)
a(knp1,kkn6)=ak(1,6)sr(kn)

a(knp2,kkni)=ak(2,1)
a(knp2,kkn2)=ak(2,2)
a(knp2,kkn3)=ak(2,3)
a(knp2,kkn4)=ak(2,4)*r(kn)
a(knp2,kkn5)=ak(2,5)*r(kn)
a(knp2,kkn6)=ak(2,6)*r(kn)

a(knp3,kkn1)=ak(3,1)
a(knp3,kkn2)=ak(3,2)
a(knp3,kkn3)=ak(3,3)
a(knp3,kkn4)=ak(3,4)*r(kn)
a(knp3,xkn§)=ak(3,5)*r(kn)
a(knp3,kkn6)=ak(3,6)+r(kn)

a(knp4,kkni)=ak(4,1)
a(knp4,kkn2)=ak(4,2)
a(knp4,kkn3)=ak(4,3)
a(knp4,kkn4)=ak(4,4)*r(kn)
a(knp4,kknb)=ak(4,5)*r(kn)
a(knp4,kkn6)=ak(4,6)*r(kn)

a(knp5,kkni)=ak(5,1)
a(knp5,kkn2)=ak(5,2)
a(knp5,kkn3)=ak(5,3)
a(knp5,kkn4)=ak(5,4)#r(kn)
a(knp5,kkn5)=ak(5,5)*r(kn)
a(knpb,kkn6)=ak(5,6)*r(kn)

a(knp6,kkni)=ak(6,1)
a(knp6,kkn2)=ak(6,2)
a(knpB,kkn3)=ak(8,3)
a(knp6,kkn4)=ak(6,4)*r(kn)
a(xnp6,kkn5)=ak(6,5)*r (kn)
a(knp8,kkn8)=ak(6,6)+r(kn)

bk(1,1)=ak(1,1)
bk(1,2)=ak(1,2)
bk(1,3)=ak(1,3)
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bk(1,4)=-ak(1,4)
bk(1,6)=-ak(1,5)
bk(1,6)=-ak(1,6)

bk(2,1)=ax(2,1)
bk(2,2)=ax(2,2)
bk(2,3)=ak(2,3)
bk(2,4)=-ak(2,4)
bk(2,5)=-ak(2,5)
bk(2,6)=-ak(2,6)

bk(3,1)=ak(3,1)
bk(3,2)=ak(3,2)
bk(3,3)=ax(3,3)
bk(3,4)=-ak(3,4)
bk(3,5)=-ak(3,5)
bk(3,6)=-ak(3,6)

bk(4,1)=-ak(4,1)*r(kn)/r(np)
bk(4,2)=-ak(4,2)*r(kn)/x (np)
bk(4,3)=-ak(4,3)*r(kn)/r(np)
bk(4,4)=ak(4,4)*r(kn)/r(np)
bk(4,5)=ak(4,5)*r(kn)/x(np)
bk(4,6)=ak(4,6)*x(kn)/x(np)

bk(5,1)=-ak(5,1)*r(kn)/r(np)
bk(5,2)=-ak(5,2)*r(kn)/x(np)
bk(5,3)=-ak(5,3)*r(kn)/r(np)
bk(5,4)=ak(5,4)*x(kn)/x(np)
bk(6,5)=ak(5,6)*r(kn)/xr(np)
bk(5,6)=ak(5,6)+r(kn)/r(np)

bk(6,1)=-ak(6,1)*r(kn)/r(np)
bk(6,2)=-ak(6,2)*r(kn)/r(np)
bk(6,3)=-ak(6,3)*r(kn)/x(np)
bk(6,4)=ak(6,4)*r(kn)/r(np)
bk(6,5)=ak(6,5)*r(kn)/r(np)
bk(6,6)=2k(6,6)*r(kn)/r(np)

a(kkni,kkn1)=a(kkni,kkn1)-bk(1,1)
a(kkni,kkn2)=a(kkn1,kkn2)-bk(1,2)
a(kkni,kkn3)=a(kkni,kkn3)-bk(1,3)
a(kkn1,kkn4)=a(kkn1,kkn4)+bk(1,4)*r(kn)
a(kkn1,kkn5)=a(kkn1,kkn5)+bk(1,5)*r(kn)
a(kkn1,kkn6)=a(kkn1,kkn6)+bk(1,6)*xr (kn)

a(kkn2,kkn1)=a(kkn2.kkn1)-bk(2,1)
a(kkn2,kkn2)=a(kkn2.kkn2)—bk(2.2)
a(kknz,kkns)=a(kkn2,kkn3)-bk(2,3)
a(kkn2,kkn4)=a(kkn2,kkn4)+bk(2,4)*r (kn)
a(kkn2,kkn5)=a(kkn2,kkn5)+bk(2,5)*r (kn)
a(kkn2,kkn6)=a(kkn2.kkn6)+bk(2,6)¢r(kn)




a(kkn3,kkni)=a(kkn3,kkn1)-bk(3,1)
a(kkn3,kkn2)=a(kkn3,kkn2)-bk(3,2)
a(kkn3,kkn3)=a(kkn3,kkn3)-bk(3,3)
a(kkn3,kkn4)=a(kkn3,kkn4)+bk(3,4)*r (kn)
a(kkn3,kkn5)=a(kkn3,kkn5) +bk(3,5)*r (kn)
a(xkn3,kkn6)=a(kkn3,kkn6) +bk(3,6)+r (kn)

a(kkn4,kkni)=a(kkn4,kkn1)-bk(4,1)
a(kkn4,kkn2)=a(kkn4,kkn2)-bk(4,2)
a(kkn4,kkn3)=a(kkn4,kkn3)-bk(4,3)
a(kkn4,kkn4)=a(kkn4,kkn4)+bk(4,4)*r(kn)
a(kkn4,kkn8)=a(kkn4,kkn5) +bk(4,5)*r (kn)
a(kkn4,kkn6)=a(kkn4,kkn6)+bk(4,6)*r(kn)

a(kkn5,kkn1)=a(kknf,kkn1)-bk(5,1)
a(kkn5,kkn2)=a(kkn5,kkn2)-bk(5,2)
a(kkn5,kkn3)=a(kknb,xkn3)-bk(5,3)
a(kkn5,kkn4)=a(kkn5,kkn4) +bk(5,4)*r (kn)
a(kkn5,kkn5)=a(kkn5,kkn5) +bk(5,5)*r (kn)
a(kkn5,kkn6)=a(kkn5,kkn6)+bk(5,6)*r(kn)

a(kkn6,kkn1)=a(kkn6,kkn1)-bk(6,1)
a(kxkn6,kkn2)=a(kkn6,kkn2)-bk(6,2)
a(kkn6,kkn3)=a(kkn6,kkn3)-bk(6,3)
a(kkn6,kkn4)=a(kkn6,kkn4)+bk(6,4)*r (kn)
a(kxkn6,xknb)=a(kkn6,kkn5)+bk(6,5)*r(kn)
a(kkn8,kkn8)=a(kkn6,xkn6)+bk(6,6)*r (kn)

a(xkn1,knp1)=bk(1,1)
a(xkn1,knp2)=bk(1,2)
a(kkni,knp3)=bk(1,3)
a(kkni,knp4)=bk(1,4)*x(np)
a(kkni,knp6)=bk(1,5)*r(np)
a(kkn1,Xnp6)=bk(1,6)*r(np)

a(kkn2,knp1)=bk(2,1)
a(xkn2,knp2)=bk(2,2)
a(xkn2,knp3)=bk(2,3)
a(kkn2,knp4)=bk(2,4)*r(np)
a(kkn2,knp5)=bk(2,5)*x(np)
a(kkn2,knp6)=bk(2, 6)*x(np)

a(kkn3,knp1)=bk(3,1)
a(kkn3,knp2)=bk(3,2)
a(kkn3,knp3)=bk(3,3)
a(kkn3,knp4)=bk(3,4)*x(np)
a(kkn3,knp5)=bk(3,5)*r(np)
a(kkn3,knp6)=bk(3,6)*r(np)

a(kkn4,knpi)=bk(4,1)
a(kkn4,knp2)=bk(4,2)
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a(xkn4,knp3)=bk(4,3)

a(kkn4,knp4)=bk(4,4)*r(np)
a(kkn4,knpb)=bk(4,5)*xr(np)
a(kkn4,knp8)=bk(4,6) *r(np)

a(Xkn§, knp1)=bk(5,1)
a(xkn§ , knp2) =bk (5, 2)
a(kkn5,knp3)=bk(5,3)
a(xkn5 ,knp4)=bk(5,4)*r(np)
a(Xkn5, knp6)=bk(5,5)*r (np)
a(kkn6 , knp6) =bk (5, 8) +r (np)

a(kkn6,knp1)=bk(6,1)
a(kkn6é,knp2)=bk(6,2)
a(xXkn6,knp3)=bk(6,3)
a(ms lh”) =bk(6 )4) *r(np)
a(kkn8,knp5)=bk(6,5)*r(np)
a(Xkn6,knp6)=bk(6,6)sr(np)

b(knp1)=b(knp1)-1x
b(knp2)=b(knp2)-ty
b(knp3)=b(knp3) -1z
b(knp4)=b(knp4)-mx0
b(knpS)=b(knp5)-my0
b(knp8) =b(knpé)-uz0

b(kkn1)=b(kknl)+fx
b(kkn2)=b(kkn2)+fy
b(kkn3)=b(kkn3)+fz
b(kkn4)=b(kkn4)-mx0%x (kn)/r(np)
b(kkn6)=b(kkn6)-mny0*x (kn)/r(np)
b(kkn6)=b(kkn6) -mz0*x (kn) /r (np)

continue
continue

sumb=0.0
do 804 i=1,npt
iitp=6#(i-1)
sumb=sumb+abs(b(iitp+1))+abs(b(iitp+2))+abs(b(iitp+3))
continue

if(inner.eq.1)then
sumbi=sumb
ratb=1.0
psumb5=sumb
end it

if(mod(inner,5).eq.0)then
ratb=abs(psumb5-sumb) /sumbi
psumbb=sumb

end it
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ssfx=vec_$asun(sfx,npt)
ssfy=vec_$asun(sfy,npt)
ssfz=vec_Sasun(sfz,npt)
ssax=vec_Sasunm(smx,npt)
ssmy=vec_$asum(smy,npt)
ssnz=vec_$asun(smz,npt)

rtx=0.0

rty=0.0

rtz=0.0

rtmx=0.0

rtmy=0.0

rtmz=0.0
if(abfx.ne.0.0)rtx=sstx/(2.0%abfx)
if(abfy.ne.0.0)rty=ssfy/(2.0%ab?y)
if(abfz.ne.0.0)xrtz=sstz/(2.0%abtz)
if(abmx.ne.0.0)rtmx=ssmx/(2.0%abmx)
if(abmy.ne.0.0)rtuy=ssmy/(2.0+abmy)
if(abmz.ne.0.0)rtmz=ssnz/(2.0%*abnz)

volume=ncellsdelx*dely*delz
if(mod(inner,5).eq.0)then
call stress(dm,npt,monop,epsa,nx,ny,nz,fn1,ftl,r
,volume,s,sigma,0,isigm)
end if

write(6,48)inner,rtx,rty,rtz, sumb,ratb,nbon, kslp,sigma

if(ist.eq.idist1s(ist/idist1))then
write(49,48)inner,rtx,rty,rtz,sumb,ratb,nbon,kslp,signa
format(6x,i5,318.3,2£10.5,2i5,112.8)

end if

1£1=0
if(iprepk.le.1)then
if(inner.ge.10.and.sigma.1t.signa0)1f1=1
if(inner.ge.10.and. (rtx+rty+rtz).1t.0.03)111=1
else
if(cs.ne.0.0)then
if(sumb.lt.epsi*0.5.0r.ratb.1t.epsi*0.5.0r. (rtx+rty+rtz+
rtax+rtmy+rtmz) .1t.0.42)1£1=1
else
if(sumb.lt.epsi.or.ratb.lt.epsi.or. (rtx+rty+rtz).1t.
0.21)1f1=1
end if
if(sigma.1t.0.5+sigma0.and.inner.ge.10)111=1
end if
if(inner.gt.inmaxo)1fl=1

i2(1f1.eq.0)then
go to 666
else
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it(ivay.eq.2.0r.als(anda).1t.0.00001)then
ckn=1.0
ckt=0.8

fnav_cursfnav_cur/real(nbon)

c write(s,s) 'tnaverage’,fnaverage
< write(s,*) ’tnav_cux’,fnav_cur
go to 888
else
ivay=2

fnaverage=fnaverage/real (nbon)
fnav_cursfnav_cur/real(nbon)

inner=1
go to 333
end if
end if

666  if(iprepk.gt.i.and.sigma.lt.0.6*sigma0.and.mod(inner,5).eq.0)then
go to 814
end if

it(iprepk.le.1.and.density.1t.0.5)then
epsdo=epsi*10.0
irelo=irel+0.5
else
epsdo=epsi
irelo=irel
end if

c---solving the quasi-linear system of equations

call relax(idil.npt.irclo,epsdo,ort.a.b.xn.nulr.ros.
+ dxn,ist,iterout,inner)

c¢---updating the fluctuation displacement

do 382 itm=1,npt
ktn=3*(dn-1)*(itm-1)
ux(itm)=ux(itm)+xn(ktm+1)
uy(itm)=uy(itm)+xn(ktm+2)
uz(itm)=uz(itn)+xn(ktm+3)
vx(itm)=ux(itm) +xn(ktnt4)
vy(itm)=vy(itm)+m(ktm+5)
vz{itm)=vz(itm)+xn(ktn+6)
382 conyinnueg

go to 333

c---once force balance is achieved, computing the streas




88s call stress(dm,npt,monop,epsa,nx,ny,nz,fnl,ftl,r
+ ,volume,s,sigma,1,isigm)

c if(ist.eq.idist1s(ist/idist1))then

c vrite(49,47)inner,rtx,rty,rtz,rtax,rtay,rtaz, nbon,kslp,signa
c 47 format(ix,i4,618.2,2i5,710.7)

c end it

c vrite(98,649)ist,iterout,inner,nunr,rtx,rty,rtz, rtax,rtay, rtez
c 649 format(3x,3i5,i7,618.3)

814 test=sigma-sigmal
if(test.1t.0.0)then
stest=-1
else
stest=1
end if
sxrror=test/sigma0

if(iter2.eq.2.and.abs(error).1t.exrormin)then
delevmin=delevy
errormin=abs(error)

end if

c write(50,601)ir,ist,iterout,stest,strn(3,3),
c + error,delev,ev,density
if(iprepk.le.1)then
write(#, s)’ix=? ir,?, trials=’,itrial,?, ist=’,ist,
+ LN density=’,density
else if(iprepk.eq.2)then
c write(»,s)'I am relaxing the stress, please vait.’
end if
write(»,601)ir,ist,iterout,stest,test,error,delev,ev,density,isign
601 format(i3,ib,2i3,£12.9,110.6,113.9,2110.6,i5)

c---check if packing criteria are met or not

if(iprepk.le.1.and.density.gt.den0.and.error.le.epso.
+ and.abs(sstrn(3,1)+sstrn(1,2)).1t.1.0e-8)kflag=1

return
end
c

c---mapping particles into microcell coordinate system

subroutine mapping(npt,nm,mxnc,sstrn,delx,dely,delz,x,y,z,map,
+ mappart,iouts)

implicit real (a-h,o-z)

implicit integer (i-n)

real sstrn(3,3),x(npt),y(npt),z(npt),delx, dely,delz,dx,dy,dz
integer map(npt),mappart(mxnc),nm
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dxsreal (nm)*delx
dysreal(nm)+dely
dz=real(nm)sdelz
iouts=0

call vec_$iinit(mappart,mxnc,0)
do 1 isi, npt

minstan(sstrm(2,1))sy(i)+tan(sstrn(3,1))*z(i)
i2(x(i).ge.xmin)then
mx=int ((x(i)-xmin)/dx)
else
ax=int((x(i)-xmin)/dx)-1
end if

yninstan(sstrn(1,2))sx(i)+tan(sstzn(3,2))*z(i)
it(y(i).ge.ymin)then
ay=int((y(i)-ymin)/dy)
else
ny=int((y(i)-ymin)/dy)-1
end it

zmin=tan(sstrn(1,3))*x(i)+tan(sstrn(2,3))sy(i)
if(z(i).ge.zmin)then
nz=int ((2(i)-zmin)/dz)
else
nzzint((z(i)-zmin)/dz)-1
end it

x(i)=x(i)-mx*dx-my*tan(sstrn(2,1))sdy-mz+tan(sstrn(3,1))*dz
y(i)=y(i)-mysdy-mxstan(sstrn(1,2) )*dx-mzstan(sstxn(3,2))*dz
z(i)=z(i)-mzedz-mx*tan(sstrn(1,3))+dx-nystan(sstrn(2,3))*dy

xmin=tan(sstrn(2,1))sy(i)+tan(sstrn(3,1))*z(i)
yninstan(sstrn(1,2))*x(i)+tan(sstrn(3,2))*z(i)
znin=tan(sstrmn(1,3))*x(i)+tan(sstrn(2,3))*y(i)

kb=int ((z(i)-zmin)/delz)+1

i1 (kb.eq.nm+1)kb=nm
jb=int((y(i)-ymin)/dely)+1
i2(jb.eq.nm+1) jo=nm
ib=int((x(i)-xmin)/delx)+1
i2(ib.eq.nm+1)idb=nm
ibar=ib+(jb-1)*nm+(kb-1) *nmenm

it(abs(mx).ge.2.and.abs(ny).ge.2.and.abs(mz) .ge.2)then
vrite(®,*) 'particle ’,i,’ is located outside’
write(#,+)’kb,jb,ib,nm,ibar= *,kb,jb,ib,nm,ibar
iouts=iouts+1

end if




map(i)=ibar
mappart(ibar)=i
1 continue

return
end

(2

c---computing microcell adjacency matrix and “kxx,kyy, kzz"

subroutine adj3(mxnc,ijs,nm,nnb,adjc,kxx, kyy, kzz)
implicit real (a-h,o-2z)
implicit integer (i-n)

integer adjc(mxnc,nnb)
integer kxx(mxnc,nnb), kyy(mxnc,nnb),kzz(mxnc,nnb)

do 60 k=1,nm
do 50 j=i,nm
do 40 i=1i,nm
x1zi+(j-1)*nn+(k-1) *nm*nm
index=0
do 31 kk=k-ijs, k+ijs
if(kk.1lt.1)then
kz=1
else if(kk.gt.nm)then
kz=-1
else
kz=0
end if
kkbar=kk+kz+*an

do 356 kj=j-ijs,j+ijs
if(kj.1lt.1)then
ky=1
else if(kj.gt.nm)then
ky=-1
slse
ky=0
end if
kjbar=kj+ky*nm

do 30 ki=i-ijs,i+ijs
if(ki.lt.1)then
kx=1
else if(ki.gt.nm)then
kx=-1
else
kx=0
end if
kibar=ki+kx*nm
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k2=kibar+(kjbar-1) snm+(kkbar-1)snnsnn
12(k1.eq.X2)go to 30
index=index+1
adjc(kl,index)=k2
kxx(k1,index)=kx
kyy(ki,index)s=ky
kzz(k1,index)=kz
30 continue
35 continue
31 continue
40 continue
50 continue
60 continue

return
end

L

¢---linear equation solver

subroutine relax(idim,npr,irel,epsd,ort,a,b,xn,nr,res,dxn,
+ ist,iout,inn)

implicit real (a-h,o-z)

implicit integer (i-n)

real a(idim,idim),b(idim),res(idin),dxn(idim),xn(idim)

zexo=0.0

call vec_$init(xn,idim,zexo)
call vec_$init(dxn,idim,zero)
call vec_$init(res,idim,zero)

inum=0
100 inum=inum+i

raax=0.0
imax=0
resum=0.0
if(inum.gt.1)then
do 22 i=1,idim
if(abs(a(i,jmax)).1t.1.0e-10)go to 21
res(i)=res(i)+a(i, jmax)+dxn(jmax)
21 resumsresunt+abs(res(i))
if(abs(res(i)).gt.rmax)then
rmax=abs(res(i))
imax=i
end if
22 continue

olse
do 20 i=1,idim
if(abs(b(i)).1t.1.0e-12)go to 20
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res(i)=-b(i)
xesumsresun+abs(res(i))
if(abs(res(i)).gt.rmax)then
raaxsabs(res(i))
imax=i
end it
20 continue
resumisresum
presunb0=resum

end it

jmax=imax
dxn(jmax)=~-res(imax)/a(imax, jmax)
xn(jmax)=xn(jmax)+dxn(jmax)

it(mod(inum,50) .eq.0)then
ratiBO0=abs(presuntO-resum)/resumni
presumtOsresum
if(ratib0.gt.epsd.and.inum.1t.irel)go to 100
nrzinum
return

end if

go to 100

end

L+

c---shuffling algorithm

subroutine shuffle(ncell,nshuf,1flip,nrif, iseed,m,m1,k1,k2)

implicit real (a-h,o-z)
implicit integer (i-n)

integer m(ncell) ,mi(ncell),ki(ncell),k2(ncell)

do 65 i=1i,ncell
n(i)=i
mi(i)=0
k1(i)=0
x2(i)=0
65 continue

ncei=ncell/2
nce2=ncell-ncel

do 100 jim=1,nshut
do 105 1£=1,111ip

mid=int(ran(iseed)*ncell)
do 102 i=1,ncell
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i£(i.le.ncell-mid)then
»1(i)=m(mid+i)
else
ni(i)=m(i-ncell+nid)
end if
102 continue
call vec_$icopy(mi,m,ncell)
106 continue

do 500 irsi,nrif
do 110 i=1, ncel

k1(i)=m(i)
110 continue
do 120 i=1,nce2
k2(i)=m(nce1+i)
120 continue

do 130 i=nce2,1,-1

n(2+i-1)=k2(i)
130 continue
do 140 i=ncei1,1,-1
m(2¢i)=k1(i)
140 continue
500 continue

100 continue
return
end

c
c—~-initialization of a real 2D array

subroutine rinit2(irow,icol,a,value)
real a(irow,icol),value

do 5 j=1,icol
do 10 i=1,irow

a(i,j)=value
10 continue
3 continue
return

end
¢
c-~-initialization of a real 3D array

subroutine rinit3(irow,icol,lay,a,value)
real a(irow,icol,lay),value

do 15 1=1,lay
do b j=1,icol




do 10 i=1,irow

‘(inj ll)"llll.
10 continue
5 continue
15 continue
return
end
c

c---initialization of an integer 2D array

subroutine init2(irow,icol,ia,value)
integer ia(irow,icol),value

do 5 j=1,icol
do 10 i=1,irow

ia(i,j)=valus
10 continue
6 continue
return
end
c

c---copy from one integer 2D array to another

subroutine matx_copy(irow,icol,iu,iv)
integer iu(irow,icol),iv(irow,icol)
do 5 j=1,icel

do 10 i=1,irow
iv(i,j)=iu(i,j)

10 continue
5 continue
return
end
c

c---copy from one real 2D array to another

subroutine rmatx_copy(irow,icol,u,v)
real u(irow,icol),v{(irow,icol)

do 5 j=1,icol
do 10 i=1,irow
v(i,j)=u(i,j)
continue
continue
return
end

c---copy from one real 3D array to another

Y




subroutine rmatx3_copy(irow,icol,lay,u v)
real u(irow,icol,lay),v(irow,icol,lay)
do 15 1=1,lay

do & j=1,icol
do 10 i=i,irow

v(i,j,1)=u(i,j.1)
10 continue
5 continue
15 continue
return
end

¢

c---subroutine to choose radii randomly for poly-disperse system

subroutine r_assign(ni,n2,n3,n10,n20,n30,r1,r2,r3,p1,p2,iseed,r)

implicit real (a-h,0-2)
implicit integer (i-n)

if2((n1.1t.n10).and. (n2.1t.020).and. (n3.1¢.030))then
razran(iseed)
if(ra.lt.pi)then
r=ri
ni=ni+t
else if((ra.gt.p1).and.(ra.lt.p2))then
r=r2
n2=n2+1
else
r=r3
n3=n3+1
end if
else if((n2.1t.n20).and.(n3.1t.n30))then
ra=ran(iseed)
if(ra.lt.(p2-p1)/(1.0-p1))then
r=r2
n2=n2+1
else
r=xr3
n3=n3+1
end if
else if{(n1.1t.n10).and.(n2.1t.n20))then
razran(iseed)
if(ra.lt.p1/p2)then
r=xi
ni=ni+{
else
r=r2
n2=n2+1
end if
else if((n1.1t.n10).and.(n3.1t.n30))then
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ra=ran(iseed)

if(ra.lt.p1/(1.0-p2+p1))then
r=ri
ni=ni+l

else
r=r3
n3=n3+1

end if

else

if(n3.1t.n30)then
r=r3
n3=n3+1

else if(n2.1t.n20)then
r=r2
n2=n2+1

else
r=ri
ni=ni+i

end if

end if

return
end

<
c---calculating stress tensor

subroutine stress(dm,npt,monop,epsa,nx,ny,nz,fnt,ft1,r,
+ volume,s,sigma,iOori,isigm)

implicit real (a-h,o-2)
implicit integer (i-n)

integer dm
real nx(npt,npt),ny(npt,npt),nz(npt,npt),fn1(npt,npt)
real nxx,nyy,nzz,r(npt),ft1(npt,npt,dm),s(dm,dm)

do 877 i=1,npt-1
do 875 j=i+1,npt
nx(j,i)=-nx(i,j)
ny(j,i)=-ny(i,j)
nz(j,i)=-nz(i,j)
fni(j,i)=tn1(4i,j)
do 874 k=1,dm
2t1(j,i,k)=-1¢1(i,j,k)

874 continue
8756 continue
877 continue
do 10 i=1,dm
do 15 j=1,dm
8(j,i)=0.0
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16 continue
10 continue

if (monop.eq.1)then
do 121 np=1,npt-1
do 122 kn=np+1,npt

if(fni(np,kn).ge.~epsa)go to 122
nxx=nx{np,kn)
nyy=ny(np,kn)
nzz=nz(np,kn)

fnix=tni(np,kn)*nxx

fniy=fn1(np,kn)*nyy

fniz=fni(np,kn)*nzz
8(1,1)=8(1,1)+r(np)*nxx*(fnix+ft1(np,kn,1))
8(2,2)=s(2,2)+r(np) *nyy*(fniy+fti(np,kn,2))
8(3,3)=8(3,3)+r(np)*nzz*(fn1z+1t1(np,kn,3))

if£(i0or1.eq.1)then
8(1,2)=3(1,2)+r(np)*nxx*(fn1y+1ti(np,kn,2))
8(1,3)=s(1,3)+r(np)*nxx*(fn1z+ft1(np,kn,3))
8(2,1)=8(2,1)+x(ap)*nyy*(fnix+£t1(np,kn,1))
8(2,3)=8(2,3)+r(np)*nyy*(fniz+ft1(np,kn,3))
8(3,1)=8(3,1)+r(np)*nzz*(fni1x+1ti(np,kn,1))
8(3,2)=8(3,2)+r(np) *nzz*(fn1y+1t1(np,kn,2))

end if
122 continue
121 continue
else

do 721 np=1,npt
do 722 kn=1,npt
if(f#n1(np,kn).ge.-epsa.or.np.eq.kn)go to 722
nxx=nx(np,kn)
nyy=ny(np,kn)
nzz=nz(np,kn)
fnix=fn1(np,kn)*nxx
fniy=fni(np,kn)*nyy
fniz=tni(np,kn)*nzz
8(1,1)=8(1,1)+r(np)*nxx*(fnix+ft1(np,kn,1))
8(2,2)=8(2,2)+r(np)*nyy*(fniy+Lti(np,kn,2))
8(3,3)=8(3,3)+r(np) mzz*(fn1z+ft1(np,kn,3))
if(iOori.eq.1)then
8(1,2)=8(1,2)+r(np) *nxx*(fniy+fti(np,kn,2))
8(1,3)=8(1,3)+r(np)*nxx*(fn1z+1ti(np,kn,3))
8(2,1)=8(2,1)+r(np) *nyy#*(fnix+tti(np,kn, 1))
8(2,3)=8(2,3)+r(np)*nyy*(fniz+ft1(np,kn,3))
8(3,1)=8(3,1)+r(np) *nzz*(fnix+ft1(np,kn, 1))
8(3,2)=8(3,2)+r(np) *nzz*(fniy+ft1(np,kn,2))

end it




722
721

25
20

continue
continue

ond it

do 20 i=1,dm
do 26 j=1,dm
if(monop.eq.1)s(j,i)=2.0+8(j,i)/volume
if(monop.eq.2)8(j,i)=8(j,i)/volume
continue
continue

if(isigm.eq.2)then
sigma=-(8(1,1)+8(2,2))/2.0

else
sigma=-(s(1,1)+8(2,2)+s(3,3))+0.333333

end if

return
end

subroutine conduct(npt,mxnc,nndb,dx,dy,dz,sstrn,x,y,z,r,
nx,ny,nz,cond,brx,bry,brz,cur,voltf,c_eff,
cxn,cres,cdxn,map,mappart,adjc,kxx, kyy, kzz, grad,barR)

real sstrn(3,3),x(npt),y(npt),z(npt),r(npt)

real nx(npt,npt),ny(npt,npt),nz(npt,npt)

real cond(npt,npt),brx(npt),bry(npt),brz(npt)

real cur(apt,npt),voltf(npt),c_eff(3,3)

real cxn(npt),cres(npt),cdxn(npt)

integer map(npt),kxx(mxnc,nnb),kyy(mxnc,nnb),kzz(mxnc,nnb)
integer adjc(mxnc,nnb),mappart(mxnc)

call rinit2(3,3,c_ef2,0.0)

call relax_v(npt,cond,brx,cxn,cres,cdxn)
call vec_$copy(cxn,volte,npt)
write(60,*)ir,ist,’ x’

£x=0.0

1y=0.0

1z=0.0

do 41 np=1,npt
sum=0.0
do 42 j_kn=1,nnb

kn=mappart (adjc(map(np),j_kn))
if(kn.eq.0)go to 42

cur(np,kn)=0.0
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42

41

52
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if(abs(cond(np,kn)).1t.1.0e-16.0r.np.eq.kn)go to 42

x1=kxx(map(np), j_kn)sdx+kyy(map(np),j_kn)+tan(sstrn(2,1))»dy
+kzz(map(np), j_kn)stan(sstrn(3,1))+dz

xkn=x(kn)-x1
cur(ap,kn)=cond (np,kn)+((x(np)-xkn)sbarRegrad
+voltf(np)-voltf(kn))
vrite(58,*)cur(np,kn)
sumzsumtcur (np,kn)
1x=1x+x (np) sbarRemx(np,kn)*cur(np,kn)
fy=ty+r(np)sbarReny(np,kn)*cur(np,kn)
f2=fz+xr (np)*barRenz(ap,kn)*cur(np,kn)
continue
write(60,*)np,sum
continue

£x=fx/(dx*dy*dz*barRebarR*barR)
ty=1y/(dxsdysdz+barR+barR¢barR)
12=12/(dx*dy*dz+barR+barR+barR)
c_eff(1,1)=-1x
c_eff(1,2)=-1y
c_ef£(1,3)=-12

call relax_v(npt,cond,bry,cxn,cres,cdxn)
call vec_$copy(cxn,voltf, npt)
vrite(60,%)ir,ist,’ y°’

1x=0.0

1y=0.0

12=0.0

do 51 np=1,npt
sum=0.0
do 52 j_kn=1,nnb

kn=mappart (adjc(map(np),j_kn))
if(kn.eq.0)go to 52

cur(np,kn)=0.0
if(abs(cond(np,kn)).1t.1.0e-15.0r.np.eq.kn)go to 52

yl=kyy(map(np),j_kn)*dy+kxx(map(np),j_kn)*tan(sstrn(1,2))*dx
+kzz (map(np), j_kn)stan(sstrn(3,2))+*dz

ykn=y (kn) -yl
cur(np,kn)=cond (np,kn)*((y(np)-ykn)*barRegrad
+voltf(np)-voltf(kn))
sum=sum+cur (op,kn)
tx=1x+r(np) *barR*nx(np,kn)*cur (np,kn)
ty=ty+r(np)sbarRsy(ap,kn)*cur(np,kn)
2z=£z+x (np)*barR*nz (np,kn)*cur (np,kn)
continue
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write(60,*)np,sum
continue

£x=1x/(dx*dy*dzsbarRebarRebarR)
ty=fy/(dxsdy*dzsbarRebarRebarR)
2z=1z/(dx*dysdz+barR¢barRebarR)
c_ef£(2,1)=-1x
c_ef1£(2,2)=-1y
c_eff(2,3)=-1z

call relax_v{(npt,cond,brz,cxn,cres,cdxn)
call vec_$copy(cxn,volt?,npt)
write(60,#*)ir,ist,’ z’

£x=0.0
1y=0.0
£2=0.0

c_top=0.0
c. bot=0.0

do 61 np=1,npt
sum=0.0
do 62 j_kn=1,nnb

kn=mappart (adjc(map(np),j_kn))
if(kn.eq.0)go to 62

cur(np,kn)=0.0
if(abs(cond(np,kn)).1t.1.0e-15.0r.np.eq.kn)go to 62

zl=kzz(map(np), j_kn)*dz+kxx(map(np), j_kn)*tan(sstrn(1,3))*dx
+kyy(map(np),j_kn)*tan(sstrn(2,3))*dy

zkn=z(kn)-z1
cur(np,kn)=cond(np,kn)*((2(np)-zkn)*barRegrad
+voltf(np)-voltf(kn))

if(xzz(map(np) ,map(kn)).eq.1)c_top=c_top+cur(np,kn)
if(kzz(map(np) ,map(kn)).eq.-1)c_bot=c_bot+cur(np,kn)

if(np.le.10)write(60,*)np,kn,cur(np,kn)
sum=sum+cur(ap,kn)
fx=1x+r(np)*barR*nx(np,kn)*cur(np,kn)
ty=ty+x(np)+barReny(np,kn)*cur (np,kn)
fz=1z+x(np)*barR*nz(np,kn)*cur (np,kn)
continue
vrite(60,+)np,sum

write(569,#)z(np),z(np)*gradp+voltt(np)

continue




2x=2x/(dxedysdzebarRebarRebarR)
tysty/(dx*dy*dzebarRebarRebark)
1z=1z/(dx*dysdzebarRebarRebarh)
c_e12(3,1)=-1x
c.e21(3,2)=-1y
c_e12(3,3)=-12

vrite(95,%)c_top,c_bot
write(96,+)dzsbarRec_top/(dxsbarR+dysbarRegrad+dzsbarR)
write(95,*)c_e11(3,3)

return

[+
¢---linear equation solver

subroutine relax_v(apt,cond,br,cxn,cres,cdxn)
implicit real (a-h,o-z)
implicit integer (i-n)

real cond(npt,npt),br(npt),cxn(npt),cres(npt),cdxn(npt)

Zexo=0.0

call vec_$init(cxn,npt,zero)
call vec_$init(cdxn,npt,zero)
call vec_$init(cres,npt,zero)

inum=0
100 inum=inum+i

rmax=0.0
imax=0
cresum=0,0
if(inum.gt.1)then
do 22 i=1,npt
if(abs(cond(i, jmax)).1t.1.0e-15)go to 21
cres(i)=cres(i)+cond(i, jmax)*cdxn(jmax)
21 cresum=cresum+abs (cres(i))
it(abs(cres(i)).gt.rmax)then
rmax=abs(cres(i))
imax=i
end if
22 continue
else
do 20 i=1,npt
if(br(i).eq.0.0)go to 20
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cres(i)=-br(i)
cresum=cresum+abs(cres(i))
if(abs(cres(i)).gt.mmax)then
rmax=abs(cres(i))
imax=i
end if
continue
cresumi=cresum
end if

jmax=imax

cdxn(jmax)=-cres(imax)/cond(imax, jmax)
cxn( jmax)=cxn(jmax)+cdxn(jmax)

if(cresum.gt.cresun1#0.00001.and. inum.1t.10000)go to 100
write(60,%) cresumi,cresum, inum’,cresumi,cresum, inum

return
end

[+

c---copy one halt of a 2D array(above diagnol) to another hal?

subroutine copyhalf(irow,u)
real u(irow,irow)
do 5 i=1,irow-1

do 10 j=i+1,irow
u(j,i)=u(i,j)

10 continue
5 continue
return
end
c

subroutine degree_phi(nz,kphi)
implicit real (a-h,o-2z)
implicit integer (i-n)

real nz
integer kphi(12)

dnz=0.1666667

if(nz.gt.0.0)then
k=6-int(nz/dnz)

else
k=-int(nz/dnz)+7

end if

kphi (k)=kphi (k)+1
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return
end

subroutine degree_theta(nnx,nny,ktheta)

implicit real (a-h,o-z)
implicit integer (i-n)

real nx,ny,nnx,nny
integer ktheta(24)

pi=3.141503

nx=nnx/sqrt(anxennx+anysnny)
ny=nny/sqrt(anxsnnx+nny+nny)

if(ny.ge.0.0)then
if(nx.ge.0.0)then
theta=asin(abs(ny))
else
theta=pi-asin(abs(ny))
end if
else
if(nx.ge.0.0)then
theta=2.0spi-asin(abs(ny))
else
theta=pi+asin(abs(ny))
end if
end if

theta=(theta/pi)*180.0
k=int (theta/15.0)+1
ktheta(k)=ktheta(k)+1

rsturn
end
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